/*-------------------------------------------------------------------------*/
/* Benchmark (Finite Domain)            INRIA Rocquencourt - ChLoE Project */
/*                                                                         */
/* Name           : eq20.pl                                                */
/* Title          : linear equations                                       */
/* Original Source: Thomson LCR                                            */
/* Adapted by     : Daniel Diaz - INRIA France                             */
/* Date           : September 1992                                         */
/*                                                                         */
/* A system involving 7 variables and 20 equations                         */
/*                                                                         */
/* Solution:                                                               */
/*  [X1,X2,X3,X4,X5,X6,X7]                                                 */
/*  [ 1, 4, 6, 6, 6, 3, 1]                                                 */
/*-------------------------------------------------------------------------*/

%:- main.

top:-
    eq20(LD), 
    write(LD), nl.

go:-	
    statistics(runtime,_),
    top,
    statistics(runtime,[_,Y]),
    write('time : '), write(Y), nl.

eq20(LD):-
    LD = [X1,X2,X3,X4,X5,X6,X7],
    domain(LD,0,10),


    876370+16105*X1+6704*X3+68610*X6
	#= 0+62397*X2+43340*X4+95100*X5+58301*X7,

    533909+96722*X5
	#= 0+51637*X1+67761*X2+95951*X3+3834*X4+59190*X6+15280*X7,

    915683+34121*X2+33488*X7
	#= 0+1671*X1+10763*X3+80609*X4+42532*X5+93520*X6,

    129768+11119*X2+38875*X4+14413*X5+29234*X6
	#= 0+71202*X1+73017*X3+72370*X7,

    752447+58412*X2
	#= 0+8874*X1+73947*X3+17147*X4+62335*X5+16005*X6+8632*X7,

    90614+18810*X3+48219*X4+79785*X7
	#= 0+85268*X1+54180*X2+6013*X5+78169*X6,

    1198280+45086*X1+4578*X3
	#= 0+51830*X2+96120*X4+21231*X5+97919*X6+65651*X7,

    18465+64919*X1+59624*X4+75542*X5+47935*X7
	#= 0+80460*X2+90840*X3+25145*X6,

    0+43525*X2+92298*X3+58630*X4+92590*X5
	#= 1503588+43277*X1+9372*X6+60227*X7,

    0+47385*X2+97715*X3+69028*X5+76212*X6
	#= 1244857+16835*X1+12640*X4+81102*X7,

    0+31227*X2+93951*X3+73889*X4+81526*X5+68026*X7
	#= 1410723+60301*X1+72702*X6,

    0+94016*X1+35961*X3+66597*X4
	#= 25334+82071*X2+30705*X5+44404*X6+38304*X7,

    0+84750*X2+21239*X4+81675*X5
	#= 277271+67456*X1+51553*X3+99395*X6+4254*X7,

    0+29958*X2+57308*X3+48789*X4+4657*X6+34539*X7
	#= 249912+85698*X1+78219*X5,

    0+85176*X1+57898*X4+15883*X5+50547*X6+83287*X7
	#= 373854+95332*X2+1268*X3,

    0+87758*X2+19346*X4+70072*X5+44529*X7
	#= 740061+10343*X1+11782*X3+36991*X6,

    0+49149*X1+52871*X2+56728*X4
	#= 146074+7132*X3+33576*X5+49530*X6+62089*X7,

    0+29475*X2+34421*X3+62646*X5+29278*X6
	#= 251591+60113*X1+76870*X4+15212*X7,

    22167+29101*X2+5513*X3+21219*X4
	#= 0+87059*X1+22128*X5+7276*X6+57308*X7,

    821228+76706*X1+48614*X6+41906*X7
	#= 0+98205*X2+23445*X3+67921*X4+24111*X5,

    labeling(LD).
