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Abstract. The log encoding has been perceived to be unsuited to arith-
metic constraints due to its hindrance to propagation. The surprising
performance of PicatSAT, which is a pure eager SAT compiler based on
the log encoding, in the MiniZinc Challenge 2016 has revived interest in
the log encoding. This paper details the optimizations used in PicatSAT
for encoding arithmetic constraints. PicatSAT adopts some well-known
optimizations from CP systems, language compilers, and hardware de-
sign systems for encoding constraints into compact and efficient SAT
code. PicatSAT is also empowered by a novel optimization, called equiv-
alence reasoning, for arithmetic constraints, which leads to reduction
of code size and execution time. In a nutshell, this paper demonstrates
that the optimized log encoding is competitive for encoding arithmetic
constraints.

1 Introduction

The drastic enhancement of SAT solvers’ performance has made SAT a viable
backbone for general CSP (Constraint Satisfaction Problem) solvers [8, 21, 30,
33, 34]. Many real-world combinatorial problems involve arithmetic constraints,
and it remains a challenge to efficiently encode arithmetic constraints into SAT.
The sparse encoding [20, 36] and order encoding [13, 25, 34] can easily blow up
the code size, and the log encoding [22, 18] is perceived to be a poor choice,
despite its compactness, due to its failure to maintain arc consistency, even for
binary constraints. This dilemma of the eager approach has led to the emergence
of the lazy approach, as represented by SMT solvers that use integer arithmetic
as a theory [6, 14, 26] and the lazy clause generation (LCG) solver that combines
SAT and constraint propagation [17, 29]. Both the eager and lazy approaches
have strengths and weaknesses [27]. For problems that require frequent checking
of arithmetic constraints the lazy approach may not be competitive due to the
overhead, even when checking is done incrementally and in a priori manner.
From an engineering perspective, the eager approach also has its merit, just like
the separation of computer hardware and language compilers is beneficial.

The surprising performance of the PicatSAT compiler in the MiniZinc Chal-
lenge 2016 is thought-provoking.3 PicatSAT is a pure SAT compiler that trans-

3 PicatSAT with the Lingeling SAT solver won two silver medals and one bronze medal
in the competition (http://www.minizinc.org/challenge2016/results2016.html)



lates CSPs into log-encoded SAT code. PicatSAT adopts the sign-and-magnitude
log encoding for domain variables. For a domain with the maximum absolute
value n, it uses log2(n) Boolean variables to encode the domain. If the domain
contains both negative and positive values, then another Boolean variable is
employed to encode the sign. Each combination of values of the Boolean vari-
ables represents a valuation for the domain variable. The addition constraint is
encoded as logic adders, and the multiplication constraint is encoded as logic
adders using the shift-and-add algorithm.

PicatSAT adopts some well-known optimizations from CP systems, language
compilers, and hardware design systems for encoding constraints into compact
and efficient SAT code: it preprocesses constraints before compilation in order to
remove no-good values from the domains of variables whenever possible; it elim-
inates common subexpressions so that no primitive constraint is duplicated; it
uses a logic optimizer to generate optimized code for adders. These optimizations
significantly improve the quality of the generated code.

This paper proposes a new optimization, named equivalence reasoning, for
log-encoded arithmetic constraints. Equivalence reasoning identifies information
about if a Boolean variable is 0 or 1, if a Boolean variable is equivalent to
another Boolean variable, or if a Boolean variable is the negation of another
Boolean variable. This optimization can reduce both the number of Boolean
variables and the number of clauses in the CNF code.

The experimental results show that equivalence reasoning reduces code sizes,
and for some benchmarks, significantly reduces the solving time. The MiniZinc
Challenge 2016 results show that PicatSAT outperformed some of the fastest
CP solvers in the competition. Our new comparisons of PicatSAT with fzn2smt,
an SMT-based CSP solver, and Chuffed, a cutting-edge LCG solver, also reveal
the competitiveness of PicatSAT.

2 The PicatSAT Compiler

PicatSAT is offered in Picat as a module named sat. In addition to the sat

module, Picat offers two other solver modules, named cp and mip, respectively.
All these three modules implement the same set of basic linear constraints over
integer domains and Boolean constraints. The cp and sat modules also im-
plement non-linear and global constraints, and the mip module also supports
real-domain variables. The common interface that Picat provides for the solver
modules allows seamless switching from one solver to another.

In order to give the reader a complete picture of the PicatSAT compiler, we
give in this section an overview of the compiler, including the adopted optimiza-
tions. A description of a preliminary version of PicatSAT with no optimizations
is given in [38].

2.1 Preprocessing and Decomposition

In general, a constraint model consists of a set of decision variables, each of
which has a specified domain, and a set of constraints, each of which restricts the
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possible combinations of values of the involved decision variables. A constraint
program normally poses a problem in three steps: (1) generate variables; (2)
generate constraints over the variables; and (3) call solve to invoke the solver
in order to find a valuation for the variables that satisfies the constraints and
possibly optimizes an objective function.

PicatSAT preprocesses the accumulated constraints when the solve predi-
cate is called. For binary equality constraints, PicatSAT excludes no-good values
from the domains to achieve arc consistency, unless the domains are too big.4

For instance, for the constraint X = 9 ∗ B + 1, where B is a Boolean variable
that has the domain 0..1, PicatSAT narrows X’s domain to {1, 10}. For other
types of constraints, including binary equality constraints that involve large-
domain variables, PicatSAT narrows the bounds of domains to archieve interval
consistency.

PicatSAT decomposes arithmetic constraints into basic constraints, including
primitive, reified, and implication constraints. A primitive constraint is one of
the following: Σn

i Bi r c (r is =, ≥, or ≤, and c is 1 or 2),5 X r Y (r is =, 6=, >,
≥, <, or ≤), X + Y = Z, and X × Y = Z, where Bi is a Boolean variable, and
X, Y , and Z are integers or integer domain variables. A reified constraint, after
decomposition, takes the form B ⇔ C, and an implication constraint has the
form B ⇒ C, where B is a Boolean variable, and C is a primitive constraint.

For a linear constraint, PicatSAT sorts the terms by the variables. This or-
dering facilitates merging terms of the same variables, but is hardly optimal
for generating efficient SAT code. PicatSAT breaks down Pseudo-Boolean (PB)
constraints, including cardinality constraints, in the same way as other linear
constraints, unless they are cardinality constraints of the form Σn

i Bi r c (c =1
or 2). For example, the cardinality constraint U +V +W +X ≤ 3, where all the
variables are Boolean, is split into the following primitive constraints:

U + V = T1
W +X = T2
T1 + T2 = T3
T3 ≤ 3

This method of decomposing PB constraints is simple, and generates compact
code. For a cardinality constraint that has n variables, this method introduces
O(n) auxiliary integer-domain variables, which require a total number of O(n×
log2(n)) Boolean variables to encode.6

During decomposition, PicatSAT introduces auxiliary variables to combine
terms in the same way as language compilers break expressions into triplets.

4 The default bounds of small domains are -3200 and 3200, which can be reset by
using the built-in fd vector min max(LB,UB).

5 The cardinality constraint is treated as a normal linear constraint when c > 2.
6 This information is disclosed here in order to give the reader a complete picture

of PicatSAT. A study is underway to investigate how this adder-based encoding
compares with other encodings, such as sorting networks [16], totalizers [5], BDDs
[7], and the decomposition method for adders by [37].
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PicatSAT makes efforts not to create variables with both positive and negative
values in their domains, if possible, because such a domain requires a sign bit and
cannot be encoded compactly. For example, for the constraint U−V +W−X ≤ 3,
PicatSAT merges U with W , and V with X so that no auxiliary variables have
negative values in their domains if the domains of the original variables do not
contain negative values.

PicatSAT eliminates common subexpressions in constraints. Whenever Pi-
catSAT introduces an auxiliary variable for a primitive constraint, it tables the
constraint. When the same primitive constraint is encountered again, Picat-
SAT reuses the auxiliary variable, rather than introducing a new variable for
the constraint. For example, when a reification constraint B ⇔ C is generated,
PicatSAT tables it and reuses the variable B, rather than introducing a new
variable for the primitive constraint C, when C is encountered again in another
constraint. The algorithm used in PicatSAT for identifying common subexpres-
sions is not as sophisticated as those used in [4, 28]. It incurs little overhead on
compilation, but fails to eliminate common subexpressions in many cases.

2.2 The Sign-and-Magnitude Log Encoding

PicatSAT employs the log-encoding for domain variables. For a domain vari-
able, dlog2(n)e Boolean variables are used, where n is the maximum absolute
value in the domain. If the domain contains both negative and positive values,
then another Boolean variable is employed to represent the sign. In this paper,
for a log-encoded domain variable X, X.s denotes the sign, X.m denotes the
magnitude, which is a vector of Boolean variables <Xn−1Xn−2 . . . X1X0>.

This sign-and-magnitude encoding requires a clause to disallow negative zero
if the domain contains values of both signs. Each combination of values of the
Boolean variables represents a valuation for the domain variable: Xn−1×2n−1 +
Xn−2×2n−2 + . . .+X1×2+X0. If there are holes in the domain, then not-equal
constraints are generated to disallow assigning those hole values to the variable.
Also, inequality constraints (≥ and ≤) are generated to prohibit assigning out-
of-bounds values to the variable if either bound is not 2k − 1 for some k.

For small-domain variables, PicatSAT calls the logic optimizer, Espresso [9],
to generate an optimal or near-optimal CNF formula. For example, for the do-
main constraint X :: [−2,−1, 2, 1], one Boolean variable, S, is utilized to encode
the sign, and two variables, X1 and X0, are employed to encode the magnitude.
A naive encoding with conflict clauses [18] for the domain requires four clauses:

¬S ∨ ¬X1 ∨ ¬X0

¬S ∨X1 ∨X0

S ∨X1 ∨X0

S ∨ ¬X1 ∨ ¬X0

These clauses correspond to four no-good values: -3, -0, 0, and 3, where -0 denotes
the negative 0. Espresso only returns two clauses for the domain:

X0 ∨ X1
¬X0 ∨ ¬X1

4



Note that the sign variable is optimized away.

2.3 Encoding Basic Constraints

The encodings for the addition and multiplication constraints will be described
in later sections. This subsection briefly describes the Booleanization of other
basic constraints.

The at-least-one constraint Σn
i Bi ≥ 1 is encoded into one CNF clause:

B1 ∨B2 ∨ . . . ∨Bn

The at-least-two constraintΣn
i Bi ≥ 2 is converted into n at-least-one constraints:

for each n−1 variables, the sum of the variables is at least one. The at-most-one
constraint ΣiBi ≤ 1 is encoded into CNF by using the two-product algorithm
[12]. The at-most-two constraint is converted into n at-most-one constraints.
The exactly-one constraint Σn

i Bi = 1 is converted into a conjunction of an at-
least-one constraint and an at-most-one constraint. The exactly-two constraint
is compiled similarly.

A recursive algorithm is utilized to compile binary primitive constraints. For
example, consider X ≥ Y . This constraint is translated to the following:

X.s = 0 ∧ Y .s = 1 ∨
X.s = 1 ∧ Y .s = 1 ⇒ X.m ≤ Y .m ∨
X.s = 0 ∧ Y .s = 0 ⇒ X.m ≥ Y .m

PicatSAT simplifies the formula if the variables’ signs are known at compile time.
Let X.m = <Xn−1Xn−2 . . . X1X0>, Y .m = <Yn−1Yn−2 . . . Y1Y0>.7 PicatSAT
introduces auxiliary variables T0, T1, . . ., Tn−1 for comparing the bits:

T0 ⇔ (X0 ≥ Y0)
T1 ⇔ (X1 > Y1) ∨ (X1 = Y1 ∧ T0)

...
Tn−1 ⇔ (Xn−1 > Yn−1) ∨ (Xn−1 = Yn−1 ∧ Tn−2)

PicatSAT then encodes the constraint X.m ≥ Y .m as Tn−1. When either X
or Y is a constant, PicatSAT compiles the constraint without introducing any
auxiliary variables.8

The reified constraint B ⇔ C is equivalent to B ⇒ C and ¬B ⇒ ¬C, where
¬C is the negation of C. Let C1 ∧ . . . ∧ Cn be the CNF formula of C after
Booleanization. Then B ⇒ C is encoded into C ′1 ∧ . . . ∧ C ′n, where C ′i =
(Ci ∨ ¬B) for i = 1, ..., n.

7 The two bit strings are made to have the same length after padding with zeros.
8 This is done by using a recursive algorithm. When X or Y is a constant, the number

of clauses in the generated code is still O(n) even though no auxiliary variables are
used.
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3 Equivalence Reasoning

Equivalence reasoning is an optimization that reasons about a possible value
for a Boolean variable or the relationship between two Boolean variables. This
reasoning exploits the properties of constraints. For example, consider the do-
main constraint X :: [2,6]. The magnitude of X is encoded with three Boolean
variables X.m = <X2,X1,X0>. PicatSAT infers X1 = 1 and X0 = 0 from the
fact that the binary representations of both 2 and 6 end with 10. With this
reasoning, PicatSAT does not generate a single clause for this domain.

The following gives several constraints on which PicatSAT performs equiva-
lence reasoning:

X = abs(Y ) ⇒ X.m = Y .m, X.s = 0
X = -Y ⇒ X.m = Y .m, X.s = Y .s = 0 → X.m = 0
X = Y mod 2K ⇒ X0 = Y0, X1 = Y1, . . ., Xk−1 = Yk−1
X = Y div 2K ⇒ X0 = YK , X1 = YK+1, . . .

Note that the constraint X.m = Y .m is enforced by unifying the corresponding
Boolean variables of X and Y at compile time. Equivalence reasoning consid-
erably eases encoding for some of the constraints. For example, the following
clause encodes the constraint X = -Y , regardless of the sizes of the domains:9

¬X.s ∨¬Y .s

and no clause is needed to encode the constraint X = abs(Y ).
Equivalence reasoning can be applied to those addition and multiplication

constraints that involve constants. We call this kind of equivalence reasoning
constant propagation. The remaining of this section gives the propagation rules.
In order to make the description self-contained, we include the encoding algo-
rithms for addition and multiplication constraints described in [38].

3.1 Constant Propagation for X + Y = Z

For the constraint X + Y = Z, if either X or Y has values of mixed signs in
its domain, then PicatSAT generates implication constraints to handle different
sign combinations [38]. In the following we assume that both operands X and
Y are non-negative (i.e., X.s = 0 and Y .s = 0), so the constraint X + Y = Z
can be rewritten into the unsigned addition X.m+Y .m = Z.m.

Let X.m = Xn−1 . . . X1X0, Y .m = Yn−1 . . . Y1Y0, and Z.m = Zn . . . Z1Z0.
The unsigned addition can be Booleanized by using logic adders as follows:

Xn−1 . . . X1 X0

+ Yn−1 . . . Y1 Y0
Zn Zn−1 . . . Z1 Z0

9 Recall that since no negative zeros are allowed, the domain constraints already guar-
antee that X.m = 0 ⇒ ¬X.s and X.m = 0 ⇒ ¬Y .s.
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A half-adder is employed for X0+Y0 = C1Z0, where C1 is the carry-out. For each
other position i (0 < i ≤ n−1), a full adder is employed for Xi+Yi+Ci = Ci+1Zi.
The top-most bit of Z, Zn, is equal to Cn. This encoding corresponds to the
ripple-carry adder used in computer architectures.

The full adder Xi +Yi +Cin = CoutZi is encoded with the following 10 CNF
clauses when all the operands are variables:

Xi ∨ ¬Yi ∨ Cin ∨ Zi

Xi ∨ Yi ∨ ¬Cin ∨ Zi

¬Xi ∨ ¬Yi ∨ Cin ∨ ¬Zi

¬Xi ∨ Yi ∨ ¬Cin ∨ ¬Zi

¬Xi ∨ Cout ∨ Zi

Xi ∨ ¬Cout ∨ ¬Zi

¬Yi ∨ ¬Cin ∨ Cout

Yi ∨ Cin ∨ ¬Cout

¬Xi ∨ ¬Yi ∨ ¬Cin ∨ Zi

Xi ∨ Yi ∨ Cin ∨ ¬Zi

If any of the operands is a constant, then the code can be simplified. For example,
if Cin is 0, then the full adder becomes a half adder, which can be encoded with
7 CNF clauses.

For the half adder Xi + Yi = CoutZi, if any of the operands is a constant,
PicatSAT infers that the other two variables are equal or one variable is the
negation of the other. PicatSAT performs the following inferences when X or Z
is a constant:

Rule-1 : Xi = 0⇒ Cout = 0 ∧ Zi = Yi.
Rule-2 : Xi = 1⇒ Cout = Yi ∧ Zi = ¬Yi.
Rule-3 : Zi = 0⇒ Cout = Xi ∧Xi = Yi
Rule-4 : Zi = 1⇒ Cout = 0 ∧Xi = ¬Yi.

Similar inference rules apply when Yi is a constant.
For example, consider the addition:

X2 X1 X0

+ 1 0 0
Z3 Z2 Z1 Z0

PicatSAT infers the following equivalences:

X0 = Z0

X1 = Z1

¬X2 = Z2

X2 = Z3

Consider, as another example, the addition:
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X2 X1 X0

+ Y2 Y1 Y0
1 0 1 1

PicatSAT infers the following equivalences:

¬X0 = Y0
¬X1 = Y1
X2 = Y2
X2 = 1
Y2 = 1

The last two equivalences, X2 = 1 and Y2 = 1, are obtained by Rule-3 and the
fact that Z3 = 1.

When PicatSAT infers an equivalence between two variables or between one
variable and another variable’s negation, PicatSAT only uses one variable in the
CNF code for the two variables, and eliminates the two CNF clauses for the
equivalence.

4 Constant Propagation for X × Y = Z

PicatSAT adopts the shift-and-add algorithm for multiplication. Let X.m be
Xn−1 . . . X1X0. The shift-and-add algorithm generates the following conditional
constraints for X × Y = Z.

X0 = 0⇒ S0 = 0
X0 = 1⇒ S0 = Y
X1 = 0⇒ S1 = S0

X1 = 1⇒ S1 = (Y << 1) + S0

...
Xi = 0⇒ Si = Si−1
Xi = 1⇒ Si = (Y << i) + Si−1
...
Xn−1 = 0⇒ Sn−1 = Sn−2
Xn−1 = 1⇒ Sn−1 = (Y << (n− 1)) + Sn−2
Z = Sn−1

The operation (Y << i) shifts the binary string of Y to left by i positions. Let
the length of the binary string of Y be u. The length of S0 is u, that of S1 is
u + 1, and so on. So the total number of auxiliary Boolean variables that are

created to hold the sums is Σ
(n+u−2)
i=u i plus the number of auxiliary variables

used for carries in the additions. Note that because Sn−1 is the same as Z, Sn−1
is never created.

If either X or Y is a constant, the basic algorithm can be improved to reduce
the number of auxiliary variables. In the following of this subsection, we assume
that X is a constant.

8



In the conditional constraints:

Xi = 0⇒ Si = Si−1
Xi = 1⇒ Si = (Y << i) + Si−1

If Xi is 0, then Si is the same as Si−1, and the variables in Si−1 can be reused
for Si. If Xi is 1, then the lowest i bits of Si are the same as the lowest i bits
of Si−1, and these i variables can be copied from Si−1 to Si. The following two
rules perform these propagation:

Rule 5 : Xi = 0⇒ copy all of the bits of Si−1 into Si.
Rule 6 : Xi = 1⇒ copy the lowest i bits of Si−1 into Si.

Let Xi be the lowest bit of X that is 1, meaning that Xj = 0 for j ∈ 0..i− 1.
Then Zi is the same as Y0, the lowest bit of Y , and Zk = 0 for k ∈ 0..i− 1. Here
is the rule that performs this propagation:

Rule 7 : X.m =<Xn−1 . . . Xi0 . . . 0> ∧Xi = 1 ⇒
Zi = Y0 ∧ Zk = 0 for k ∈ 0..(i− 1).

In particular, if X is a power of 2, then Z is the result of shifting Y to left by
n− 1 positions, and no auxiliary variables are needed.

The number of additions performed by the shift-and-add algorithm is the
number of 1s in the binary string of X. If X is a constant that is not a power
of 2 but is close to a power of 2, then PicatSAT converts the multiplication into
an addition. The following rules perform this optimization:

Rule-8 : X = 2K − 1 ⇒
rewrite X × Y = Z into 2K × Y = Z + Y .

Rule-9 : X = 2K − 2 ⇒
rewrite X × Y = Z into 2K × Y = Z + 2× Y .

For example, PicatSAT converts the constraint 7 ×X = Z to 8 ×X = Z + X,
which requires one addition while the original constraint requires three additions.

5 Experimental Results

PicatSAT, which is implemented in Picat, has about 8,000 lines of code, ex-
cluding comments. PicatSAT connects to Lingeling SAT solver (version 587f)
through a C interface.

We have done two experiments in order to evaluate the compiler using Picat
version 2.1.10 In the first experiment, we ran PicatSAT on several benchmark
problems that involve arithmetic constraints, and measured the code size and
the execution time of each of the benchmarks. These results show how effective
equivalence reasoning is on reducing the code size and the execution time.

10 http://picat-lang.org
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In the second experiment, which was conducted on Linux Ubuntu 14.04LTS
with an Intel i7-5820K 3.30GHz CPU and 32GHz RAM, we compared PicatSAT
with Chuffed11 and fzn2smt version 2.0.02.12 Chuffed is a cutting-edge LCG
solver. The fzn2smt solver, which took the second place in MiniZinc Challenge
2012, translates FlatZinc13 into SMT that is solved by Yices14.

This section does not include comparisons of PicatSAT with many other
state-of-the-art CSP solvers. In the free search category of the MiniZinc Chal-
lenge 2016, an old version of PicatSAT outperformed some of the fastest CSP
solvers, and was only second to HaifaCSP 15 by a small margin.

Table 1 evaluates how effective equivalence reasoning is on reducing the code
size (#vars, the number of variables, and #cls, the number of clauses). The first
three benchmarks are well known puzzles in the CP community. The next three
are instances of the magic square problem for the grid sizes of 7 × 7, 8 × 8,
and 9 × 9. The remaining 5 benchmarks are integer programming benchmarks
taken from [30].16 The column PicatSATnor shows the results obtained with the
equivalence reasoning optimization disabled, and the column PicatSAT shows
the results obtained when the optimization was enabled.

Table 1. Evaluation of effectiveness of equivalence reasoning (code size)

Benchmark PicatSATnor PicatSAT
#vars #cls #vars(%) #cls(%)

crypta 3445 15374 1893 (54) 11537 (75)

eq10 10212 46087 6043 (59) 36696 (79)

eq20 19292 86469 11397 (59) 68869 (79)

magic square 7 3543 81588 3463 (97) 81428 (99)

magic square 8 6882 56324 6864 (99) 56288 (99)

magic square 9 10306 86268 10226 (99) 85908 (99)

maxclosed 10 100 10 3778 23219 3091 (83) 21150 (91)

maxclosed 10 100 100 25420 162110 21128 (83) 148580 (91)

maxclosed 10 200 10 3066 18864 2559 (83) 17418 (92)

maxclosed 20 100 1000 221454 1577283 198137 (89) 1464492 (92)

maxclosed 30 200 1000 417816 3078098 379477 (90) 2881243 (93)

11 https://github.com/chuffed/chuffed, released in December 2016.
12 The fzn2smt solver (http://ima.udg.edu/recerca/lap/fzn2smt) has not been updated

since 2012. There have been no significant speedups in the past five years in SAT
solvers, on which both PicatSAT and SMT are based. PicatSAT uses Lingeling ver-
sion 587f, which was released in February 2011 but is still faster than recent versions
on most MiniZinc Challenge benchmarks. Therefore, this comparison is still relevant,
if not completely up to date.

13 http://www.minizinc.org
14 http://yices.csl.sri.com
15 http://strichman.net.technion.ac.il/haifacsp/
16 Instances that can be solved by the preprocessor are not included.
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As can be seen, the optimization led to certain amounts of reduction in the
code size for each of the benchmarks. For crypta, the reduction in code size is
most significant; the number of variables is reduced to 54%, and the number of
clauses is reduced to 75%. For magic square, whose code size is dominated by
an all-different constraint, the reduction in code size is only 1%.

Table 2 evaluates how effective equivalence reasoning is on reducing the com-
pile time (comp) and the solving time (solve). The solving time of the CNF code
was measured using Lingeling version 587f on a Cygwin notebook computer
with 2.60GHz Intel i7 and 64GB RAM. Interestingly, while the code reduction
for magic square is the least significant, the speedups are the most significant.
Overall, the optimization reduces both the compile time and the solving time,
and the results show that the equivalence reasoning optimization is worthwhile
to incorporate.

Table 2. Evaluation of effectiveness of equivalence reasoning (time, seconds)

Benchmark PicatSATnor PicatSAT
comp solve comp(%) solve(%)

crypta 0.18 0.337 0.17 (94) 0.310 (91)

eq10 0.32 1.177 0.26 (81) 1.000 (84)

eq20 0.61 1.239 0.48 (80) 1.134 (91)

magic square 7 0.50 2.414 0.47 (94) 1.020 (42)

magic square 8 0.57 14.908 0.56 (98) 6.835 (45)

magic square 9 0.66 37.501 0.63 (95) 25.326 (67)

maxclosed 10 100 10 0.43 0.420 0.40 (93) 0.393 (93)

maxclosed 10 100 100 2.50 2.041 2.36 (94) 1.877 (91)

maxclosed 10 200 10 0.23 0.353 0.25 (108) 0.306 (86)

maxclosed 20 100 1000 29.00 14.809 28.47 (98) 14.352 (96)

maxclosed 30 200 1000 42.713 31.030 39.58 (92) 28.584 (92)

Table 3 compares PicatSAT with fzn2smt and Chuffed on the instances used
in the MiniZinc Challenge 2012.17 All of the instances were translated from
MiniZinc into FlatZinc using each individual solver’s global constraints.18 The
time limit was set to 15 minutes per instance, which limits the total of the
conversion time and the solving time. For each benchmark, the number in the
parentheses is the total number of instances, and the number in each column in-
dicates the number of completely solved instances by the solver. For optimization
problems, an instance is considered solved if an optimal solution was given and
its optimality was proven. PicatSAT solved 77 instances, while fzn2smt solved
52, and Chuffed solved 67 instances. This experiment demonstrates the com-

17 The benchmarks of MiniZinc 2012 were used because fzn2smt took the second place
in that competition, and didn’t compete ever since.

18 fzn2smt, which does not have any solver-specific globals, uses MiniZinc’s default
decomposer.
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petitiveness of PicatSAT in comparison with two lazy-approach-based solvers.
When equivalence reasoning was disabled, PicatSAT solved 75 instances. This
result also shows the worthiness of the optimization.

Table 3. A comparison of three CSP solvers (solved instances)

Benchmark PicatSAT PicatSATnor fzn2smt Chuffed

amaze (6) 6 6 5 5

amaze2 (6) 6 6 6 6

carpet-cutting (5) 1 0 0 2

fast-food (5) 5 5 5 4

filters (5) 4 3 2 3

league (6) 3 3 2 2

mspsp (6) 6 6 6 6

nonogram (5) 5 5 5 5

parity-learning (7) 7 7 0 2

pattern-set-mining-k1 (2) 1 1 0 0

pattern-set-mining-k2 (3) 2 2 1 1

project-planning (6) 5 5 0 6

radiation (5) 3 3 0 2

ship-schedule (5) 5 5 5 5

solbat (5) 5 5 5 5

still-life-wastage (5) 5 5 3 5

tpp (7) 7 7 7 7

train (6) 1 1 0 1

vrp (5) 0 0 0 0

total (100) 77 75 52 67

6 Related Work

A wide variety of problems have been encoded into SAT and solved by SAT
solvers. SAT is also the backbone of many logic language systems, such as formal
methods [23], answer set programming [10, 19], and NP-SPEC [11]. PicatSAT is
a compiler that translates high-level constraints into SAT. Other SAT compilers
include BEE [25], FznTini [21], meSAT [33], and Sugar [34]. PicatSAT, like
FznTini, adopts the log encoding, while the other compilers are based on the
order encoding.

Despite the compactness of the log encoding, it has received little attention
for CSP solving, probably because of its weak propagation strength and its re-
quirement of engineering efforts. FznTini was the only known log-encoding based
CSP solver before PicatSAT. FznTini employs the 2’s complement encoding for
domain variables, while PicatSAT uses the sign-and-magnitude encoding. Fzn-
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Tini demonstrated the promise of the log encoding, but it lacks optimizations,
and is not considered competitive with recent CP solvers [30].

The perception that eager SAT-encoding approaches are not suited to arith-
metic constraints has motivated the development of lazy approaches such as
SMT [6, 27] and lazy clause generation [17, 29] that integrates CP and SAT solv-
ing techniques. Recent MiniZinc competitions have been dominated by LCG
solvers; the HaifaCSP solver [35] also performs learning during search.

Encodings, such as BDDs [1, 7] and sorting networks [16], have been pro-
posed for special form of arithmetic constraints, such as Boolean cardinality
constraints and Pseudo-Boolean (PB) constraints. Linear arithmetic constraints
can be compiled into SAT through PB constraints [2]. This encoding through PB
constraints is less compact than the adder-based log encoding, but has stronger
propagation power. The hybrid encoding that integrates order and log encod-
ings [32] compiles linear constraints that involve large-domain variables into SAT
through PB constraints.

The idea of identifying equivalences and exploiting them to reduce code sizes
has been explored in both SAT compilation and SAT solving. The BEE compiler
[25] performs equi-propagation, which takes advantage of the properties of the
order-encoding to infer equivalences. Although equivalences could be detected
to some extent by SAT solvers, it is always beneficial to do the reasoning at
compile time, because SAT solvers are unaware of the meaning of the original
constraints, and it is expensive to detect equivalences at preprocessing time [15]
or reason about them at solving time [24].

PicatSAT embodies optimizations used in CP systems for processing con-
straints [31], in language compilers for eliminating sub-expressions [3], and in
hardware design systems for optimizing logic circuits [9]. The equivalence reason-
ing optimization, which is specific to the log encoding, has not been implemented
in any other SAT compilers.

7 Conclusion

In this paper we have presented the PicatSAT compiler and its optimizations.
PicatSAT employs the log encoding, which has received little attention by SAT-
based CSP solvers for its lack of propagation strength. PicatSAT adopts opti-
mizations from CP systems (preprocessing constraints to narrow the domains
of variables), language compilers (decomposing constraints into basic ones and
eliminating common subexpressions), and hardware design systems (using a logic
optimizer to optimize codes for adders and other basic constraints). Furthermore,
PicatSAT reasons about equivalences in arithmetic constraints, and exploit them
to eliminate variables and clauses. With these optimizations, PicatSAT is able
to generate more compact and faster code for arithmetic constraints.

This work has shed a light on the debate between the eager and lazy ap-
proaches to constraint solving with SAT. The failed attempts to find efficient
encodings for arithmetic constraints have motivated the development of the lazy
approaches. This paper has shown that the eager approach based on the opti-
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mized log encoding is not as bad for arithmetic constraints as it was perceived
before. A comparison with an SMT-based CSP solver and a LCG solver shows
the competitiveness of PicatSAT.

In addition to the optimizations, including the novel equivalence reasoning
optimization, and the engineering effort, the success of PicatSAT is also at-
tributed to Picat, the implementation language. The log encoding is arguably
more difficult to implement than the sparse and order encodings. Picat’s features,
such as attributed variables, unification, pattern-matching rules, and loops, are
all put into good use in the implementation. There are hundreds of optimiza-
tion rules, and they can be described easily as pattern-matching rules in Picat.
Logic programming has been proven to be suitable for language processing in
general, and for compiler writing in particular; PicatSAT has provided another
testament.

The success of PicatSAT does not in any way undermine the lazy approaches:
there are certainly many problems for which the lazy approaches prevail, and
many theories incorporated in SMT solvers do not yet have efficient SAT encod-
ings. A comprehensive comparison of eager encoding and lazy approaches is on
the stack for future work.

PicatSAT still has plenty of room for improvement, especially concerning
global constraints and special constraints. One direction for future work is to
carry out these improvements.

The optimizations reported in this paper could be only the tip of the iceberg.
Numerous algorithms and optimizations have been proposed for hardware de-
sign systems, such as multi-bit and multi-operand adders and multipliers. When
multiple bits are considered at once, there will be more reasoning opportunities
opening up. Another direction for future work is to investigate these algorithms
for SAT encodings.
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