
In Pursuit of an Efficient SAT Encoding for the
Hamiltonian Cycle Problem

Neng-Fa Zhou

CUNY Brooklyn College & Graduate Center

Abstract. SAT solvers have achieved remarkable successes in solving
various combinatorial problems. Nevertheless, it remains a challenge to
find an efficient SAT encoding for the Hamiltonian Cycle Problem (HCP),
which is one of the most well-known NP-complete problems. A central
issue in encoding HCP into SAT is how to prevent sub-cycles, and one
well-used technique is to map vertices to different positions. The HCP
can be modeled as a single-agent path-finding problem. If the agent occu-
pies vertex i at time t, and occupies vertex j at time t+1, then vertex j’s
position must be the successor of vertex i’s. This paper compares three
encodings for the successor function, namely, a unary encoding that uses
a Boolean variable for each vertex-time pair, an optimized binary adder
encoding that uses a special incrementor with no carry variables, and
a LFSR encoding that uses a linear-feedback-shift register. This paper
also proposes a preprocessing technique that rules out a position from
consideration for a vertex and a time if the agent cannot occupy the
vertex at the time. Our study has surprisingly revealed that, with opti-
mization and preprocessing, the binary adder encoding is a clear winner:
it solved some instances of the knight’s tour problem that had been be-
yond reach for eager encoding approaches, and performed the best on
the HCP instances used in the 2019 XCSP competition.

1 Introduction

The Hamiltonian Cycle Problem (HCP) is one of the most well-known NP-
complete problems. Given a graph, the goal of HCP is to find a cycle in the
graph that includes each and every vertex exactly once. As HCP occurs in many
combinatorial problems, the global constraint circuit(G) has become indis-
pensable in constraint programming (CP) systems. Given a graph G represented
by a list of domain variables, the constraint ensures that any valuation of the
variables constitutes a Hamiltonian cycle.

SAT solvers have achieved remarkable successes in solving combinatorial
problems, ranging from formal methods [2, 27], planning [24, 37], answer set pro-
gramming [6, 14], to general constraint satisfaction problems (CSPs) [4, 20, 22,
33, 39, 40, 43]. The key issue in encoding HCP into SAT is how to prevent sub-
cycles. A naive encoding, which bans sub-cycles in every proper subset of vertices,
requires an exponential number of clauses. One common technique used in SAT
encodings for HCP is to map vertices to different positions so that no sub-cycles



can be formed during search. The direct encoding of the mapping, which requires
O(n3) clauses for a graph of n vertices in the worst case, does not scale well to
large graphs [19, 28, 35]. In order to circumvent the explosive encoding size of the
eager approach, researchers have proposed lazy approaches, such as satisfiabil-
ity modulo acyclicity [3] that incorporates reachability checking during search,
and incremental SAT solving that incrementally adds clauses to ban sub-cycles
[38]. Recently inspired by the log encoding [21], Johnson proposed a compact
encoding for HCP, which employs a linear-feedback-shift register (LFSR) for the
successor function [23, 18].

This paper continues the pursuit of an efficient SAT encoding for HCP. HCP
can be modeled as a single-agent path-finding problem. Given a graph of n
vertices, the agent resides at the start vertex at time 1, moves to a neighboring
vertex in each step, and at time n+1 comes back at the start vertex after having
visited each and every vertex exactly once. Each vertex is mapped to a distinct
position. If the agent occupies vertex i at time t, and occupies vertex j at time
t+1, then vertex j’s position must be the successor of vertex i’s. This encoding is
called distance encoding. This paper compares three encodings for the successor
function, namely, a unary encoding that uses a Boolean variable for each vertex-
time pair, an optimized binary adder encoding that uses a special incrementor
with no carry variables, and a LFSR encoding that uses a linear-feedback-shift
register. This paper also proposes a preprocessing technique that rules out a
position from consideration for a vertex and a time if the agent cannot occupy
the vertex at the time.

The experimental results, using two SAT solvers, show that, with preprocess-
ing, the optimized binary adder encoding significantly outperformed the unary
and the LFSR encodings. The binary adder encoding solved some instances of
the knight’s tour problem that had been beyond reach for eager encoding ap-
proaches, and solved more instances of the HCP benchmark used in the 2019
XCSP competition than other solvers.

2 Preliminaries

This section defines HCP, and gives the basic SAT encodings for domain variables
and the at-most-one constraint that are employed in the SAT encodings for HCP.

2.1 The HCP and the circuit Constraint

Given a directed graph, the goal of HCP is to find a cycle in the graph that
includes each and every vertex exactly once. In CP, HCP can be described as a
global constraint circuit(G), where G = [V1, V2, . . . , Vn] is a list of domain
variables representing the graph.

For example, Figure 1 gives a directed graph and its representation using
domain variables, where vertex i is represented by the domain variable Vi (i =
1,2,3,4), and the domain of Vi indicates the outgoing arcs from vertex i. A val-
uation Vi = j of the domain variables represents a subgraph of G that consists

2



Fig. 1. A directed graph and its representation using domain variables

of arcs (i, j) (i ∈ 1 . . . n, j ∈ 1 . . . n). The circuit(G) constraint enforces that
the subgraph represented by a valuation of the domain variables forms a Hamil-
tonian cycle. For example, for the graph in Figure 1, [2,4,1,3] is a solution
because 1→2, 2→4, 4→3, 3→1 is a Hamiltonian cycle, but [2,1,4,3] is not
because the graph 1→2, 2→1, 3→4, 4→3 contains two sub-cycles.

2.2 Direct Encoding

Let X :: {a1, a2, . . . , an} be a domain variable. The direct encoding [11] in-
troduces a Boolean variable Bi for Bi ⇔ X = ai (i ∈ 1..n), and generates
the constraint exactly-one(B1, B2, . . . , Bn), which is converted to a conjunc-
tion of an at-least-one constraint ≥1 (B1, B2, . . . , Bn), and an at-most-one con-
straint ≤1 (B1, B2, . . . , Bn). The at-least-one constraint is encoded as the clause
B1 ∨B2 ∨ . . . ∨Bn.

2.3 SAT Encodings for the At-Most-One Constraint

The at-most-one constraint has numerous encodings into SAT (see [42] for the
latest comparison).

The pairwise (PW) encoding for ≤1 (B1, B2, . . . , Bn) decomposes the con-
straint into ¬Bi ∨ ¬Bj , for i ∈ 1..n − 1 and j ∈ i + 1..n. PW generates O(n2)
clauses, and is therefore not viable for large n.

The bisect (BS) encoding for ≤1 (B1, B2, . . . , Bn) splits the variables into
two groups G1 = {B1, B2, . . . , Bm} and G2 = {Bm+1, . . . , Bn}, where m =
bn2 c. It introduces a new variable T as the commander for G1, and uses ¬T
as the commander for G2. BS decomposes the constraint into the following:
(BS-1) For i ∈ 1..m: Bi ⇒ T ; (BS-2) For i ∈ m + 1..n: Bi ⇒ ¬T ; (BS-3)
≤1 (B1, B2, . . . , Bm); (BS-4) ≤1 (Bm+1, . . . , Bn). Constraint BS-1 forces T to
be 1 if any of the variables in G1 is 1. Constraint BS-2 forces T to be 0 if
any of the variables in G2 is 1. Since T cannot be both 0 and 1 at the same
time, it is impossible for one variable in G1 and another variable in G2 to be 1
simultaneously. Constraints BS-3 and BS-4 recursively enforce at-most-one on
the two groups. The BS is a special case of the commander encoding [25]. The
number of clauses generated by BS is characterized by f(n) = n+ 2f(n/2), and
the number of new variables is characterized by g(n) = 1 + 2g(n/2).

3



The product (PD) encoding [7] for ≤1 (B1, B2, . . . , Bn) arranges the vari-
ables on an m×m matrix M , where m =

√
n. It introduces two vectors of new

variables 〈R1, R2, . . . , Rm〉 and 〈C1, C2, . . . , Cm〉, where Ri represents row i and
Cj represents column j. In case n is not a square number, the extra entries of
M are filled with 0. PD decomposes the constraint into the following: (PD-1)
For i ∈ 1..m, j ∈ 1..m: Mij ⇒ Ri ∧ Cj ; (PD-2) ≤1 (R1, R2, . . . , Rm); (PD-3)
≤1 (C1, C2, . . . , Cm). The number of clauses generated by PD is characterized
by f(n) = 2n + 2f(

√
n), and the number of new variables is characterized by

g(n) = 2
√
n+ 2g(

√
n).

A hybrid encoding for ≤1 (B1, B2, . . . , Bn) is employed for HCP. When n ≤
4, PW is used. Otherwise, the constraint is divided into smaller at-most-one
constraints using BS or PD, depending on the cost function f(n)+αg(n), where
α is the penalty for introducing a new variable. For example, for n = 64 and
α = 3, the constraint is first divided using PD into two sub-constraints, each of
which involves 8 variables, and then the sub-constraints are divided using BS
into base ones, which are encoded using PW.

2.4 Log Encoding and Logic Optimization

The log encoding [21] is more compact than the direct encoding. The sign-and-
magnitude log encoding uses a sequence of Boolean variables for the magnitude.
If there are values of both signs in the domain, then the encoding uses another
Boolean variable for the sign. Each combination of values of the Boolean variables
represents a value for the domain variable.

Under log encoding, each domain variable can be treated as a truth table,
and a logic optimizer can be utilized to find CNF clauses for it. The Quine-
McCluskey (QM) algorithm [29, 36] is popular for two-level logic optimization.
A product is a conjunction of literals. Given a truth table, each tuple is a product,
called a minterm, that involves all the inputs. A minterm is in the on-set if its
output is required to be 1, in the off-set if the output is required to be 0, and
in the don’t-care-set, otherwise. A product of literals is an implicant of a truth
table if it entails no minterms in the off-set. A prime implicant is an implicant
that is not implied by any other implicant. For a truth table, the QM algorithm
first computes all the prime implicants of the table, and then finds a minimal set
of prime implicants that covers all the minterms in the on-set and none of the
minterms in the off-set. The second step of the QM algorithm requires solving
the minimum set-covering problem, which is NP-hard [12]. The Espresso logic
optimizer [5] only computes a partial set of prime implicants based on heuristics,
and therefore a smaller set-covering problem.

For example, consider the domain variable X :: [1, 2, 5, 6]. The log encoding
uses a sequence of three Boolean variables, X2X1X0, to encode the domain. It
is possible to represent 8 different values with three Boolean variables, including
the values in X’s domain and the no-good values in the set {0, 3, 4, 7}. A naive
encoding with conflict clauses [13] for the domain requires four clauses:

X2 ∨X1 ∨X0 (X 6= 0)

4



X2 ∨ ¬X1 ∨ ¬X0 (X 6= 3)
¬X2 ∨X1 ∨X0 (X 6= 4)
¬X2 ∨ ¬X1 ∨ ¬X0 (X 6= 7)

Each of these clauses corresponds to a no-good value. The logic optimizer Espresso
only uses two clauses:

X1 ∨X0

¬X1 ∨ ¬X0

Each clause corresponds to a prime implicant in the disjunctive normal form.
Note that the variable X2 is optimized away.

3 The Distance Encoding for the circuit Constraint

The circuit(G) constraint, whereG is a list of domain variables [V1, V2, . . . , Vn],
enforces the following: (1) each of the vertices has exactly one incoming arc and
exactly one outgoing arc; (2) each of the proper subgraphs of G is a tree, mean-
ing that the subgraph is connected and the number of vertices is 1 greater than
the number of arcs. A SAT encoding based on these properties does not use any
extra variables, but requires an exponential number of clauses.

The distance encoding for HCP employs a matrix of Boolean variables H of
size n × n for the Hamiltonian cycle. The entry Hij is 1 if and only if the arc
(i, j) occurs in the resulting Hamiltonian cycle.

The following channeling constraints connects the matrix H and the original
domain variables [V1, V2, . . . , Vn]:

For each i ∈ 1..n, j ∈ 1..n, i 6= j:
Hij ⇔ Vi = j (1)

Since each variable Vi takes only one value, constraint (1) entails that each vertex
has exactly one outgoing arc. The following degree constraints ensure that each
vertex has exactly one incoming arc:

For each j ∈ 1..n:
∑n

i=1Hij = 1 (2)

For each pair of vertices (i, j) (i ∈ 1..n, j ∈ 1..n), if the arc (i, j) is not in the
original graph G, then the entry Hij is set to 0. Therefore, the number of Boolean
variables in H equals the number of arcs in G.

Graph H that satisfies constraints (1) and (2) may contain sub-cycles. In
order to ban sub-cycles, the distance encoding maps each vertex to a distinct
position. Let p(i) be the position of vertex i, s(p) denote the successor of position
p,1 and sk(p) be the kth successor of p. Assume that vertex 1 is visited first,
and it is mapped to position 1.2 The following constraints ensure that the cycle
starts at 1 and ends at 1:
1 The successor function, such as the LFSR described below, may generate a different

sequence of numbers from the natural number sequence.
2 A good heuristic is to start with a vertex that has the smallest degree [41].

5



For each i ∈ 2..n:
H1i ⇒ p(i) = s(1) (3)
Hi1 ⇒ p(i) = sn−1(1) (4)

Constraint (3) ensures that if there is an arc from vertex 1 to vertex i then i’s
position is the successor of 1. Constraint (4) ensures that if there is an arc from
vertex i to vertex 1 then i’s position is the (n− 1)th successor of 1.

In addition to the above constraints, the following constraints ensure that
the arcs are connected and the vertices are positioned successively:

For each i ∈ 2..n, j ∈ 2..n, i 6= j:
Hij ⇒ p(j) = s(p(i)) (5)

Constraint (5) ensures that vertex j is positioned immediately after vertex i if
arc (i, j) is in the Hamiltonian cycle.

Theorem 1. Constraints (1) - (5) guarantee that the graph represented by H
is Hamiltonian.

Proof. Constraints (1) and (2) entail that each vertex in graph H has exactly
one incoming arc and exactly one outgoing arc, and therefore they guarantee
that graph H is cyclic. Assume that the cycle in which vertex 1 occurs is:

1→ v2 → v3 → . . .→ vk → 1

According to constraints (3) - (5), the following conditions hold:

p(v2) = s(1)
p(vi) = s(p(vi−1)) for i ∈ 3..k
p(vk) = sn−1(1)

These conditions entail k = n. Therefore, graph H includes all the vertices, and
is Hamiltonian. ut
The theorem shows that it is sufficient to use one-way entailment constraints in
(3) - (5) instead of stronger equivalence constraints.

The final encoding size depends on how the successor function is encoded. The
code size of constraints (1) and (2) is not dependent on the successor function.
The number of Boolean variables in H equals the number of arcs in G. Constraint
(1) mimics the direct encoding of domain variables. Both constraint (1) and
constraint (2) are encoded as exactly-one constraints. Let d be the maximum
degree in G. If the 2-product encoding is used for at-most-one, then constraints
(1) and (2) introduce O(n ×

√
d) new Boolean variables and require O(n × d)

clauses.

4 Three Encodings for the Successor Function

There are several different ways to encode the successor function p(j) = s(p(i))
used in constraint (5). This section gives three such encodings, namely, the
unary encoding, the binary adder encoding, and the linear-feedback-shift-register
(LFSR) encoding.

6



4.1 Unary Encoding

The unary encoding of the successor function employs a matrix U of Boolean
variables of size n × n, where Uip = 1 iff vertex i’s position is p for i ∈ 1..n
and p ∈ 1..n. Since vertex 1 is visited first, U11 is initialized to 1. Each vertex
is visited exactly once, so the following constraint must hold:

For each i ∈ 1..n:
∑n

p=1 Uip = 1 (6)

For each vertex i (i ∈ 1..n), there is exactly one position p (p ∈ 1..n) for which
Uip is 1.

Constraints (3)-(5) given in the previous section are translated into the fol-
lowing under the unary encoding:

For each i ∈ 2..n:
H1i ⇒ Ui2 (3’)
Hi1 ⇒ Uin (4’)

For each i ∈ 2..n, j ∈ 2..n, i 6= j, p ∈ 2..(n− 1):
Hij ∧ Uip ⇒ Uj(p+1) (5’)

Constraint (3’) ensures that if there is an arc from vertex 1 to vertex i then
vertex i’s position is 2. Constraint (4’) ensures that if there is an arc from vertex
i to vertex 1 then vertex i’s position is n. Constraint (5’) ensures that if arc (i, j)
is in the Hamiltonian cycle, and vertex i’s position is p, then vertex j’s position
is p + 1. The constraints (3’)-(5’) entail that for each position there is exactly
one vertex mapped to it (

∑n
i=1 Uip = 1 for p ∈ 1..n).

The two dimensional array U has O(n2) variables. In addition, some tem-
porary Boolean variables are introduced by the exactly-one constraints in (6).
The number of clauses is dominated by constraint (5’), which requires O(n2×d)
clauses to encode, where d is the maximum degree in G.

4.2 Binary Adder Encoding

The binary adder encoding of the successor function employs a log-encoded
domain variable Pi for each vertex i, whose domain is the set of possible positions
for the vertex. As all the positions are positive, no sign variables are needed in
the encoding.

Since vertex 1 is visited first, P1 = 1. Constraints (3)-(5) given above are
translated into the following under log encoding:

For each i ∈ 2..n:
H1i ⇒ Pi = 2 (3”)
Hi1 ⇒ Pi = n (4”)

For each i ∈ 2..n, j ∈ 2..n, i 6= j:
Hij ⇒ Pj = Pi + 1 (5”)

The efficiency of the encoding heavily depends on the encoding of the successor
function Pj = Pi + 1 used in constraint (5”).

7



Let X’s log encoding be 〈Xm−1Xm−2 . . . X1X0〉 and Y ’s log encoding be
〈Ym−1Ym−2 . . . Y1Y0〉. Consider the unsigned addition:

Xm−1 . . . X1 X0

+ 1
Ym−1 . . . Y1 Y0

A naive encoding performs the addition using ripple carry adders from the least
significant bit to the most significant bit. If a half-adder is used for each bit
position, then the addition requires, in total, m − 1 carry variables and 7 ×m
clauses.

The following sequential incrementor performs the addition using no carry
variables:3

– For bit position 0, Y0 = ¬X0, which is encoded as two clauses: Y0 ∨X0 and
¬Y0 ∨ ¬X0.

– For bit position 1, the input carry from bit position 0 is X0, so the following
constraints must hold:

X0 ⇒ Y1 = ¬X1

¬X0 ⇒ Y1 = X1

These two constraints are converted into 4 clauses.
– For each other bit position i (i > 1), the carry from bit position i− 1 is 1 iff
Yi−1 = 0 and Xi−1 = 1, so the following constraints must hold:

¬Yi−1 ∧Xi−1 ⇒ Yi = ¬Xi

otherwise ⇒ Yi = Xi

These constraints can be encoded using 6 clauses.

The total number of clauses used for the addition is 2 + 4 + (m− 2) ∗ 6.
The sequential incrementor is improved as follows. For bit position i (i > 1),

instead of considering one bit at a time, the improved version considers two bits
at a time, imposing the following constraints:

¬Yi−1 ∧Xi−1 ⇒ Yi = ¬Xi

¬Yi−1 ∧Xi−1 ∧Xi ⇒ Yi+1 = ¬Xi+1

otherwise ⇒ Yi = Xi ∧ Yi+1 = Xi+1

These constraints can be encoded using 11 clauses, resulting in a reduction of
one clause for each two bits.

Furthermore, the improved incrementor treats the top 4 bits as a whole using
the adder in Figure 2.4 The carry from bit position m−5 to bit position m−4 is
1 iff Ym−5 = 0 and Xm−5 = 1. The adder uses 21 clauses, resulting in a reduction
of 3 clauses from 24 clauses needed by the one-bit incrementor and 1 clause from
22 clauses needed by the two-bit incrementor.

3 This encoding is based one suggested by Vitaly Lagoon via personal communication.
4 One may wonder why the chosen number is 4, not 3 or 5. Interestingly, a choice of

3, 5, or any other number will increase the overall number of clauses for Espresso.

8



Xm−1 ∨Xm−4 ∨ ¬Ym−1 Xm−2 ∨Xm−4 ∨ ¬Ym−2

Xm−1 ∨ ¬Ym−1 ∨ ¬Ym−2 Xm−3 ∨Xm−4 ∨ ¬Ym−3

Xm−1 ∨ ¬Ym−1 ∨ ¬Ym−3 Xm−2 ∨ ¬Ym−2 ∨ ¬Ym−3

Xm−1 ∨ ¬Ym−1 ∨ ¬Ym−4 Xm−2 ∨ ¬Ym−2 ∨ ¬Ym−4

Xm−3 ∨ ¬Ym−3 ∨ ¬Ym−4 ¬Xm−4 ∨Xm−5 ∨ Ym−4

¬Xm−4 ∨ ¬Ym−5 ∨ Ym−4 Xm−1 ∨ ¬Xm−2 ∨ Ym−1 ∨ Ym−2

Xm−2 ∨ ¬Xm−3 ∨ Ym−2 ∨ Ym−3 Xm−4 ∨ ¬Xm−5 ∨ Ym−5 ∨ Ym−4

Xm−4 ∨Xm−5 ∨ ¬Ym−4 Xm−4 ∨ ¬Ym−5 ∨ ¬Ym−4

¬Xm−1 ∨ Ym−1 ¬Xm−1 ∨ ¬Xm−2 ∨ ¬Ym−1 ∨ Ym−2

¬Xm−2 ∨ ¬Xm−3 ∨ ¬Ym−2 ∨ Ym−3 Xm−3 ∨ ¬Xm−4 ∨ ¬Xm−5 ∨ Ym−5 ∨ Ym−3

¬Xm−3 ∨ ¬Xm−4 ∨ ¬Xm−5 ∨ Ym−5 ∨ ¬Ym−3

Fig. 2. 4-bit adder 〈Xm−1Xm−2Xm−3Xm−4〉+(¬Ym−5 ∧Xm−5)=〈Ym−1Ym−2Ym−3Ym−4〉

Under log encoding, each of the position variables Pi (i ∈ 2..n) uses log2(n)
Boolean variables. The number of clauses is dominated by constraint (5”), which
requires O(n × log2(n) × d) clauses to encode, where d is the maximum degree
in G.

4.3 LFSR Encoding

The LFSR encoding of the successor function also employs a log-encoded domain
variable Pi for each vertex i (i ∈ 1..n) [23]. Given a binary number X, the
Fibonacci LFSR determines the next binary number Y by shifting the bits of X
one position to left and computing the lowest bit of Y by applying xor on the
taps bits of X. For a given length of n, the LFSR is able to generate all 2n − 1
non-zero numbers from any non-zero start number.

For example, consider the length n = 4 and the taps {2, 3}. Given a binary
number 〈X3X2X1X0〉, the next binary number 〈Y3Y2Y1Y0〉 is calculated as fol-
lows: Y3 = X2, Y2 = X1, Y1 = X0, Y0 = X2 ⊕X3. Assume the start number is
0001, the LFSR produces the following sequence:

0001 → 0010 → 0100 → 1001 →
0011 → 0110 → 1101 → 1010 →
0101 → 1011 → 0111 → 1111 →
1110 → 1100 → 1000 → 0001

The LFSR encoding is more compact than the binary adder encoding. The
LFSR encoding does not use any carry variables either. For a number, in order
to produce its successor, the LFSR encoding uses two clauses for each bit except
the lowest bit, for which it uses 4 clauses if the number of taps is 2, and 16
clauses if the number of taps is 4.

5 Preprocessing

The distance encoding treats HCP as a single-agent path-finding problem. At
time 1, the agent resides at vertex 1. In each step, the agent moves to a neigh-
boring vertex. The agent cannot reach a vertex at time t (t ∈ 2..n) if there are

9



no paths of length t − 1 from vertex 1 to the vertex. Similarly, since the agent
must be back at vertex 1 at time n+1, the agent cannot occupy a vertex at time
t (t ∈ 2..n) if there are no paths of length n − t + 1 from the vertex to vertex
1. This simple reasoning rules out impossible positions from consideration for
vertices during preprocessing.

If the agent cannot occupy vertex i at time t, then vertex i cannot be mapped
to position t. Under the unary encoding, the variable Uit is set to 0; under binary
encoding, the value st−1(1) is excluded from the domain of Pi.

It is expensive to check if there is a path of a given length t from one vertex
to another if t is large.5 For long paths, the shortest-distance heuristic is used.
For each vertex i (i ∈ 2..n), if the shortest distance from vertex 1 to vertex i is
t, then the agent cannot occupy vertex i at times 1, 2, . . . , t. Similarly, if the
shortest distance from vertex i to vertex 1 is t, then the agent cannot occupy
vertex i at times n− t+ 2, n− t+ 3, . . ., n.

If the graph is undirected, and the start vertex 1 has exactly two neighbors,6

then the agent must visit one of the neighbors at time 2, and visit the other
neighbor at time n. This means that the agent cannot occupy either neighbor at
times 3, 4, . . . n−1. This idea can be seen as a special case of the Hall’s theorem
[17].

6 Experimental Results

All the encodings described above have been implemented in the Picat compiler.7

An experiment was conducted to compare the three encodings for the successor
function on the knight’s tour problem and the HCP benchmark used in the 2019
XCSP solver competition8, using the SAT solver MapleLCMDiscChronoBT-DL-
v3, the winner of the main track of the 2019 SAT Race9. In order to show how
the SAT solutions perform in a broader context, the experiment also included
or-tools (version 7.6)10, clingon (version 5.4.0)11, and an incremental SAT-
based approach in the comparison. For or-tools, a lazy clause generation CP
solver, HCP is encoded as as a circuit constraint, and the first-fail strategy
is utilized to label variables. For clingon, an answer-set programming system
that performs search-time reachability testing [3], there are several encodings for
HCP. The following ASP encoding, which has been shown to perform the best,
was used in the experiment:

{hpath(X,Y) : link(X,Y)} = 1 :- node(X).

5 Let M be the adjacency matrix of the graph. A naive algorithm that finds all paths
of length t requires computing M t.

6 The knight’s tour problem belongs to this case if one of the corner squares is chosen
as vertex 1.

7 picat-lang.org
8 http://xcsp.org/competition
9 http://sat-race-2019.ciirc.cvut.cz/

10 https://developers.google.com/optimization
11 https://potassco.org/

10



{hpath(X,Y) : link(X,Y)} = 1 :- node(Y).

reach(1).

reach(Y) :- reach(X),hpath(X,Y).

:- not reach(X),node(X).

The incremental approach treats HCP as an assignment problem. If a solution
does not contain any sub-cycles, then the solution is returned as a valid solution
to the original HCP. If the solution contains a sub-cycle that includes a set of
vertices S, then the clause sum(Hi∈Sj /∈S) > 1 is added into the encoding to ban
the sub-cycle. The incremental approach uses the same SAT solver, and restarts
from scratch after each new sub-cycle elimination clause is added.

The knight’s tour problem is a popular benchmark that has been utilized
to evaluate solvers. The problem can be solved algorithmically in linear-time
[8]. The Warnsdorff’s rule [34], which always proceeds to the square from which
the knight has the fewest onwards moves, is a very effective heuristic used in
backtracking search. With Warnsdorff’s rule, called first-fail principle in CP,
and the reachability-checking capability during search, CP solvers are able to
solve very large instances. Regarding SAT-based solvers, no eager approaches
have been reported to be able to solve instances of size 30 or larger. The HCP
benchmark used in the XCSP competition contains 10 instances selected from
the Flinders challenge set12 with numbers of vertices ranging from 338 to 1584.

All the CPU times reported below were measured on Linux Ubuntu with an
Intel i7 3.30GHz CPU and 32G RAM. The time limit used was 40 minutes per
instance.

Tables 1 and 2 compare the encodings on, respectively, the number of vari-
ables and the number of clauses. For each encoding, results from two separate
settings are included, one with preprocessing (pp) and the other with no prepro-
cessing (no-pp). The results are roughly consistent with the theoretical analysis:
The LFSR encoding (lfsr) generates the most compact code, then followed by
the binary adder encoding (adder), and finally by the unary encoding (unary).
When preprocessing is excluded, adder and lfsr use the same number of vari-
ables because both of them use log encoding for position variables. When pre-
processing is included, however, adder uses slightly fewer variables than lfsr.
This is because preprocessing produces holes scattered in the domains for lfsr,
sometimes requiring more prime implicants to cover than the original domains,
while preprocessing narrows bounds of the domains or produces holes concen-
trated in the domains for adder, and Picat is able to fix some of the bits at
translation time.

Table 3 compares the encodings on CPU time, which includes both the trans-
lation and solving times. The column inc gives the time taken by the incremen-
tal approach. The entry MO indicates out-of-memory. Preprocessing is generally

12 http://fhcp.edu.au/fhcpcs

11



Table 1. A comparison on number of variables

Benchmark adder lfsr unary
pp no-pp pp no-pp pp no-pp

knight-8 820 920 912 920 2,958 5,582
knight-10 1,428 1,481 1,479 1,481 6,883 12,767
knight-12 2,375 2,454 2,442 2,454 13,596 25,477
knight-14 3,217 3,320 3,310 3,320 24,032 46,415
knight-16 4,994 5,386 5,376 5,386 40,385 77,806
knight-18 5,972 6,141 6,131 6,141 62,109 121,129
knight-20 8,065 8,272 8,266 8,272 94,974 182,236
knight-22 10,073 10,318 10,308 10,318 136,612 263,410
knight-24 12,152 12,451 12,443 12,451 189,984 376,426

Table 2. A comparison on number of clauses

Benchmark adder lfsr unary
pp no-pp pp no-pp pp no-pp

knight-8 11,161 13,939 8,964 9,284 17,271 33,623
knight-10 22,453 23,535 15,641 14,831 42,802 85,836
knight-12 39,784 41,647 39,214 40,163 92,130 184,775
knight-14 55,846 58,272 56,326 54,044 173,041 345,322
knight-16 81,672 96,232 73,231 76,329 306,414 604,730
knight-18 112,465 116,527 89,033 90,088 486,798 970,960
knight-20 147,513 152,184 120,849 107,883 746,299 1,499,129
knight-22 183,121 188,641 148,018 114,412 1,101,488 2,213,986
knight-24 237,071 244,714 215,516 231,325 1,563,133 3,102,627

effective in reducing the time. The results of adder are very interesting: when
preprocessing was turned off, adder even failed to solve size 12; with prepro-
cessing, however, it efficiently solved all of the instances. It is also interesting to
note that lfsr does not scale up as well as adder, although lfsr also uses log
encoding for position variables, and uses slightly fewer clauses. One explanation,
as shown in Table 1, could be that preprocessing helps adder more than lfsr in
reducing the number of variables. The inc is generally not competitive; it ran
out of time on two instances, and ran out of memory on another two instances.
The inc keeps track of all the sub-cycles that have been found, and adds clauses
to ban them in subsequent searches. The result indicates that inc is not feasible
when there are a huge number of sub-cycles in the graph. The solvers or-tools
and clingo are very fast on these instances; or-tools solved all in less than 2
seconds each, and clingo solved all in less than 1 second each.

Table 4 gives several knight’s tour instances solved by the binary adder en-
coding. These instances are easy for or-tools and clingon to solve, but had
been out of reach for eager SAT encoding approaches.

12



Table 3. A comparison on CPU time (seconds)

Benchmark adder lfsr unary inc
pp no-pp pp no-pp pp no-pp

knight-8 2.88 2.39 2.93 3.4 8.92 11.26 0.17
knight-10 2.39 113.18 3.67 3.83 11.76 18.31 0.47
knight-12 4.46 >2400 11.12 81.33 22.15 42.51 5.16
knight-14 4.59 >2400 13.31 126.52 48.96 89.43 88.63
knight-16 7.83 >2400 30.16 52.50 92.61 225.47 >2400
knight-18 10.16 >2400 35.85 153.99 137.91 436.13 MO
knight-20 9.39 >2400 505.40 >2400 208.53 512.10 625.25
knight-22 25.84 >2400 1243.22 >2400 358.51 >2400 >2400
knight-24 9.64 >2400 >2400 >2400 >2400 >2400 MO

Table 4. Knight’s tour instances solved by the binary adder encoding (seconds)

size 26 28 30 32 34 36 38

time 57.45 83.04 62.90 346.57 188.00 310.09 304.13

Table 5 compares the solvers on CPU time using the XCSP competition
instances.13 The number in parentheses indicates the number of vertices in the
graph. Preprocessing was enabled for the eager encoding approaches. Overall,
adder performed the best. It solved all the instances, none of which took more
than 250 seconds. The lfsr failed on one instance. For the solved instances, the
times taken by lfsr are much longer than those taken by adder. The unary
failed on 6, and inc failed on 7 instances, due to time out or memory out. While
or-tools and clingo demonstrated superior performance on the knight’s tour
benchmark, they are not as competitive as adder on these instances; or-tools
failed on 7 instances, and clingo failed on 1 instance and took more than 500
seconds to solve two of the instances each.

For comparison, the same experiment was also conducted using CaDiCaL,
the second-place winner in the 2019 SAT Race. With preprocessing, adder using
CaDiCaL also solved all the instances in Tables 3 and 5, while lfsr failed on
knight-24 and graph48, and unary failed on 4 knight’s tour instances and 6
XCSP instances.

13 All the participating solvers in the 2019 XSCP competition, except PicatSAT and
Choco, failed on every single instance. PicatSAT, which is based on an early version
of adder, solved all of the 10 instances, the sequential version of Choco solved 4
instances, and the parallel version of Choco solved 7 instances.

13



Table 5. XCSP competition instances (CPU time)

benchmark adder lfsr unary inc or-tools clingo

graph162 (909) 184.18 676.91 MO 21.98 49.62 16.94
graph171 (996) 27.25 51.58 1887.64 >2400 >2400 52.50
graph197 (1188) 64.18 270.74 >2400 >2400 >2400 1821.98
graph223 (1386) 68.16 144.20 1279.99 >2400 >2400 17.92
graph237 (1476) 91.6 388.25 >2400 >2400 >2400 23.78
graph249 (1558) 52.88 112.60 494.45 336.21 307.30 13.47
graph252 (1572) 98.22 403.25 >2400 >2400 >2400 541.48
graph254 (1582) 63.65 268.23 541.97 168.32 >2400 12.7
graph255 (1584) 45.86 144.83 >2400 >2400 171.0 >2400
graph48 (338) 213.0 >2400 >2400 MO >2400 0.97

7 Related Work

Various approaches have been proposed for HCP [15]. As HCP is a special variant
of the Traveling Salesman Problem (TSP), many approaches proposed for TSP
[9, 16] can be tailored to HCP.

Recently several studies have used SAT solvers for HCP. A common technique
utilized in encoding HCP into SAT in order to prevent sub-cycles is to impose a
strict ordering on the vertices. The bijection encoding [19] uses an edge constraint
for each non-arc pair (i, j) that bans vertex j from immediately following vertex i
in the ordering. This encoding is compact for dense graphs. The relative encoding
[35] imposes transitivity on the ordering: if vertex i reaches vertex k, and vertex
k reaches vertex j, then vertex i reaches vertex j. The reachability encoding,
which is used in translating answer-set programs with loops into SAT [28], also
imposes transitivity on the ordering. All these encodings use direct encoding
for positions, and require O(n3) clauses in the worst case. It is reported in [41]
that using a hierarchical encoding for domain variables significantly reduces the
encoding size and increases the solving speed for HCP. However, hierarchical
encoding still suffers from code explosion for large graphs.

The distance encoding for HCP is not new. It is based on the standard
decomposer used in MiniZinc [31], which uses an order variable Oi for each
vertex i, and ensures that if Vi = j then Oj = Oi + 1. The idea of using order or
position variables could be traced back to the integer programming formulation
that uses dummy variables to prevent sub-cycles [30].

The log encoding [21] resembles the binary representation of numbers used in
computer hardware. Despite its compactness, log encoding is not popular due to
its poor propagation strengths [26]. Johnson first came up with the idea of using
log encoding for position variables and the LFSR for encoding the successor
function [23]. The binary adder encoding for Y = X + 1 proposed in this paper
is a special optimized incrementor that does not use any carry variables.

The preprocessing technique for excluding unreachable positions from the
domains of position variables is well-used in constraint programming. Similar

14



techniques have been used for maintaining consistency of some of the global
constraints, such as the regular constraint [32], and for eliminating variables in
multi-agent path finding [1]. This work has shown, for the first time, that when
preprocessing is effective the binary adder encoding of the successor function
significantly outperforms the unary and LFSR encodings for HCP.

In order to circumvent the explosive encoding sizes of eager approaches, re-
searchers have proposed lazy approaches, such as satisfiability modulo acyclicity
[3] and incremental SAT solving [38] for HCP. The idea to incrementally add
constraints to avoid code explosion is the pillar of the cutting-plane method
[9, 10]. The incremental approach may suffer if the problems require repeated
addition of sub-cycle elimination clauses.

8 Conclusion

A central issue in encoding HCP into SAT is how to prevent sub-cycles, and
one well-used technique is to map vertices to different positions. This paper has
compared three encodings for the successor function used in the distance encod-
ing of HCP, and proposed a preprocessing technique that rules out unreachable
positions from consideration. Our study has surprisingly revealed that, with pre-
processing and optimization, the binary adder encoding outperforms the unary
and the LFSR encodings. While no eager SAT encoding approaches have been
reported to be able to solve size 30 or larger of the knight’s tour problem, the
binary adder encoding, using the SAT solver MapleLCMDiscChronoBT-DL-v3,
succeeded in solving all instances up to size 38 in less than 6 minutes each. This
is a remarkable advancement of the state of the art. While there is still a long
way to go for eager SAT encoding approaches to be competitive with CP and
ASP solvers on the knight’s tour problem, this paper has showed that the binary
adder encoding is competitive with the best CP and ASP solvers on the HCP
benchmark used in the 2019 XCSP competition.

An efficient SAT encoding for HCP will expand the successes of SAT solvers in
solving combinatorial problems, such as the travelling salesman problem (TSP),
which is a generalization of HCP, and its variants. Further improvements include
exploiting special graph structures and symmetry-breaking techniques in SAT
encodings.

Acknowledgement

The author would like to thank H̊akan Kjellerstrand for helping test and tune
Picat’s SAT compiler, Marijn Heule for pointing out Andrew Johnson’s work on
the LFSR encoding, Andrew Johnson for clarifications on his LFSR encoding,
and the anonymous reviewers for helpful comments. This work is supported in
part by the NSF under the grant number CCF1618046.

15



References

1. Roman Barták, Neng-Fa Zhou, Roni Stern, Eli Boyarski, and Pavel Surynek. Mod-
eling and solving the multi-agent pathfinding problem in Picat. In 29th IEEE In-
ternational Conference on Tools with Artificial Intelligence, pages 959–966, 2017.

2. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of
Satisfiability. IOS Press, 2009.

3. Jori Bomanson, Martin Gebser, Tomi Janhunen, Benjamin Kaufmann, and Torsten
Schaub. Answer set programming modulo acyclicity. In Logic Programming and
Nonmonotonic Reasoning (LPNMR), pages 143–150, 2015.

4. Lucas Bordeaux, Youssef Hamadi, and Lintao Zhang. Propositional satisfiability
and constraint programming: A comparative survey. ACM Comput. Surv., 38(4):1–
54, 2006.

5. Robert King Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, 1984.

6. Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer set program-
ming at a glance. Commun. ACM, 54(12):92–103, 2011.

7. Jingchao Chen. A new SAT encoding of the at-most-one constraint. In Proc. of
the Int. Workshop of Constraint Modeling and Reformulation, 2010.

8. Axel Conrad, Tanja Hindrichs, Hussein Morsy, and Ingo Wegener. Solution of the
knight’s Hamiltonian path problem on chessboards. Discrete Applied Mathematics,
50(2):125–134, 1994.

9. William J. Cook. In Pursuit of the Traveling Salesman: Mathematics at the Limits
of Computation. Princeton University Press, 2012.

10. G. B. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-
salesman problem. Operations Research, 2:393–410, 1954.

11. Johan de Kleer. A comparison of ATMS and CSP techniques. In IJCAI, pages
290–296, 1989.

12. Michael R. Garey and David S. Johnson. Computers and Intractability. W.H.
Freeman and Co., 1979.

13. Marco Gavanelli. The log-support encoding of CSP into SAT. In CP, pages 815–
822, 2007.

14. Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
Conflict-driven answer set solving. In IJCAI, pages 386–, 2007.

15. Ronald J. Gould. Recent advances on the Hamiltonian problem: Survey III. Graphs
and Combinatorics, 30(1):1–46, 2014.

16. Gregory Gutin and Abraham P. Punnen. The Traveling Salesman Problem and Its
Variations (Combinatorial Optimization). Springer, 2007.

17. Philip Hall. Representatives of subsets. J. London Math. Soc., 10(1):26–30, 1935.
18. Michael Haythorpe and Andrew Johnson. Change ringing and Hamiltonian cycles:

The search for erin and stedman triples. EJGTA, 7(1):61–75, 2019.
19. Alexander Hertel, Philipp Hertel, and Alasdair Urquhart. Formalizing dangerous

SAT encodings. In Proceedings of SAT, pages 159–172, 2007.
20. Jinbo Huang. Universal Booleanization of constraint models. In CP, pages 144–

158, 2008.
21. Kazuo Iwama and Shuichi Miyazaki. SAT-variable complexity of hard combinato-

rial problems. In IFIP Congress (1), pages 253–258, 1994.
22. Peter Jeavons and Justyna Petke. Local consistency and SAT-solvers. JAIR,

43:329–351, 2012.

16



23. Andrew Johnson. Quasi-linear reduction of Hamiltonian cycle prob-
lem (HCP) to satisfiability problem (SAT), 2014. Disclosure Num-
ber IPCOM000237123D, IP.com, Fairport, NY, June 2014. Available at
https://priorart.ip.com/IPCOM/000237123.

24. Henry A. Kautz and Bart Selman. Planning as satisfiability. In ECAI, pages
359–363, 1992.

25. Will Klieber and Gihwon Kwon. Efficient CNF encoding for selecting 1 from n
objects. In the Fourth Workshop on Constraints in Formal Verification(CFV),
2007.

26. Donald Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satis-
fiability. Addison-Wesley, 2015.

27. Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2004.

28. Fangzhen Lin and Jicheng Zhao. On tight logic programs and yet another transla-
tion from normal logic programs to propositional logic. In IJCAI, pages 853–858,
2003.

29. Edward J. McCluskey. Minimization of Boolean functions. Bell System Technical
Journal, 35(6):1417V–1444, 1956.

30. C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation
of traveling salesman problems. J. ACM, 7(4):326–329, 1960.

31. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a standard CP modelling language. In
CP, pages 529–543, 2007.

32. Gilles Pesant. A regular language membership constraint for finite sequences of
variables. In CP, pages 482–495, 2004.

33. Justyna Petke. Bridging Constraint Satisfaction and Boolean Satisfiability. Artifi-
cial Intelligence: Foundations, Theory, and Algorithms. Springer, 2015.

34. Ira Pohl. A method for finding Hamilton paths and knight’s tours. Commun.
ACM, 10:446–449, 1967.

35. Steven David Prestwich. SAT problems with chains of dependent variables. Dis-
crete Applied Mathematics, 130(2):329–350, 2003.

36. Willard Van Orman Quine. The problem of simplifying truth functions. The
American Mathematical Monthly, 59(8):521V–531, 1952.

37. Jussi Rintanen. Planning as satisfiability: Heuristics. Artif. Intell., 193:45–86,
2012.

38. Takehide Soh, Daniel Le Berre, Stéphanie Roussel, Mutsunori Banbara, and
Naoyuki Tamura. Incremental SAT-based method with native Boolean cardinality
handling for the Hamiltonian cycle problem. In Logics in Artificial Intelligence
(JELIA), pages 684–693, 2014.

39. Mirko Stojadinovic and Filip Maric. meSAT: multiple encodings of CSP to SAT.
Constraints, 19(4):380–403, 2014.

40. Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Com-
piling finite linear CSP into SAT. Constraints, 14(2):254–272, 2009.

41. Miroslav N. Velev and Ping Gao. Efficient SAT techniques for absolute encoding of
permutation problems: Application to Hamiltonian cycles. In Eighth Symposium
on Abstraction, Reformulation, and Approximation (SARA), 2009.

42. Neng-Fa Zhou. Yet another comparison of SAT encodings for the at-most-k con-
straint. ArXiv, abs/2005.06274, 2020.

43. Neng-Fa Zhou and H̊akan Kjellerstrand. Optimizing SAT encodings for arithmetic
constraints. In CP, pages 671–686, 2017.

17


