
Modeling and Solving the Multi-Agent Pathfinding
Problem in Picat

Roman Barták
Charles University

Praha, Czech Republic
bartak@ktiml.mff.cuni.cz

Neng-Fa Zhou
CUNY Brooklyn College

and Graduate Center
New York, USA

zhou@sci.brooklyn.cuny.edu

Roni Stern and Eli Boyarski
Ben Gurion University of the Negev

Beer Sheva, Israel
{roni.stern,eli.boyarski}@gmail.com

Pavel Surynek
AIST, Tokyo, Japan
Charles University

Praha, Czech Republic
pavel.surynek@aist.go.jp

Abstract—The multi-agent pathfinding (MAPF) problem has
attracted considerable attention because of its relation to prac-
tical applications. In this paper, we present a constraint-based
declarative model for MAPF, together with its implementation in
Picat, a logic-based programming language. We show experimen-
tally that our Picat-based implementation is highly competitive
and sometimes outperforms previous approaches. Importantly,
the proposed Picat implementation is very versatile. We demon-
strate this by showing how it can be easily adapted to optimize
different MAPF objectives, such as minimizing makespan or
minimizing the sum of costs, and for a range of MAPF variants.
Moreover, a Picat-based model can be automatically compiled
to several general-purpose solvers such as SAT solvers and
Mixed Integer Programming solvers (MIP). This is particularly
important for MAPF because some MAPF variants are solved
more efficiently when compiled to SAT while other variants are
solved more efficiently when compiled to MIP. We analyze these
differences and the impact of different declarative models and
encodings on empirical performance.

I. INTRODUCTION

The multi-agent pathfinding (MAPF) problem amounts to
finding a plan for agents to move within a graph from their
starting locations to their destinations, such that no agents
collide with each other at any time. MAPF can be solved
suboptimally in polynomial time [14], but finding an optimal
solution is NP-hard for common optimization criteria [20],
[27]. MAPF has been intensively studied because the problem
occurs in various forms in practical applications, such as
robotics and games [7], [17], and the problem also provides a
platform for studying search algorithms [16], [19], [26].

Recently, MAPF solvers were proposed using declarative
models, relying on off-the-shelf solvers to find solutions. These
solvers include CSP (Constraint Satisfaction Problems) [15],
SAT (Boolean Satisfiability) [23], [24], ASP (Answer Set Pro-
gramming) [8], and MIP (Mixed Integer Programming) [28].
Declarative models are easy to implement and maintain, can
easily be altered for other variants, and are amenable to new
domain-specific constraints. SAT-based MAPF solutions are
especially promising; they have been shown to be competitive
with some well-designed heuristic search algorithms [24].

All of the declarative models follow the planning-as-
satisfiability approach [11], which finds a bounded-length
sequence of states, where the first state corresponds to the
initial state, the last state satisfies the goal condition, and each

pair of successive states constitutes a valid action. An efficient
declarative solution requires a good model of variables and
constraints, a fast solver, and a decent model encoding.

In this paper, we give a constraint-based declarative model
for MAPF that is very natural, versatile, and efficient. It
follows prior SAT-based modeling of the problem [21], [22],
using a Boolean variable to indicate whether an agent occupies
a vertex of the graph in a state, and constraints to ensure
the validity of all states and state transitions. Our declarative
model is implemented in Picat, a general-purpose language
that provides several tools for modeling and solving com-
binatorial problems [31]. Implementing the problem in Picat
and defining it in a declarative way provides great flexibility.
Important variants of the MAPF problem can be implemented
by performing minimal changes in our Picat program. In
particular, we show how to implement a MAPF solver that
optimizes different objective functions, or a MAPF solver that
generates plans that are robust to unexpected delays, or even
a MAPF solver that supports agents with different priorities.

Modeling MAPF in Picat also enables easy comparison
of different underlying solvers and encodings. Indeed, we
performed a set of experiments with our Picat models that
compare several SAT-based and MIP-based solutions. In the
regular MAPF setting, the SAT-based solvers were more
competitive than MIP. However, when including agents with
different priorities, the MIP solver performs better, highlight-
ing the benefit of our Picat program, in which changing to a
different solver is extremely easy.

In addition, we compare our declarative model empirically
to a several state-of-the-art MAPF solvers, including a MAPF
solver based on Answer Set Programming (ASP) [8], a so-
phisticated SAT encoding called MDD-SAT [24], and the best
MAPF solver from the Conflict-Based Search family of MAPF
solvers [4]. The results show that our Picat-based solution is
significantly better than the ASP solution and comparable to
MDD-SAT for the standard makespan MAPF variant.

The contributions of the paper include the following: (1) a
high-level declarative solution in Picat for the MAPF prob-
lem that is easily accessible and more efficient than other
declarative solutions; (2) adaptations of this declarative solu-
tion to accommodate important MAPF variants with different
constraints and different objectives, including an encoding of

Fig. 1. An instance of the MAPF problem and a solution.

different agent priorities, which have never been addressed
before; and (3) a comprehensive empirical comparison with
different declarative and non-declarative solutions, encodings,
and underlying solvers.

II. THE MAPF PROBLEM

The input for the MAPF Problem is a graph G = (V,E),
where V is a set of vertices and E is a set of edges, and a
set of agents A = {a1, a2, . . . , ak}, where each agent ai has a
starting vertex start(ai) ∈ V and a goal vertex goal(ai) ∈ V .
At each time step, an agent can stay at its current vertex or
move to an adjacent vertex. To represent the option of an agent
waiting, we assume that the relation represented by the graph
G is reflexive, meaning that (v, v) ∈ E, for v ∈ V . The MAPF
problem amounts to finding a path Pi = <vi0, vi1, . . . , vim>
for each agent ai(i = 1, 2, . . . , k), such that vi0 = start(ai),
vim = goal(ai), (vit, vi(t+1)) ∈ E (for t = 0, 1, . . . ,m − 1),
and no two agents collide at any time: vit 6= vjt, for i, j =
1, 2, . . . , k, i 6= j, and t = 0, 1, . . . ,m. The set of satisfying
paths for the agents constitutes a plan for the MAPF problem.

Definition 1 (End time): The end time of a path Pi =
<vi0, vi1, . . . , vim> for an agent ai is the time point e that
satisfies the following conditions: (1) vi(e−1) 6= vie; (2)
vit = goal(ai) for t = e, e + 1,. . . ,m.
In other words, the end time is the time at which the agent
reaches its goal, and will stay at the goal afterwards.

Definition 2 (Makespan): The makespan of a plan is the
maximum end time of the paths in the plan.

One of the most common MAPF objective functions is
to find a plan that has the minimum makespan. The basic
declarative model we present in this paper is designed to
optimize this objective function, and we show later how to
adapt it to other objective functions.

Figure 1 gives a sample instance of the MAPF problem.
In the initial state, agent a1 occupies vertex v1, and agent a2
occupies vertex v2. The goal of the problem is to move agent
a1 to vertex v5 and agent a2 to vertex v6. Figure 1 also shows
a solution plan for the problem. At time step t0 → t1, agent
a1 moves from vertex v1 to vertex v3, and agent a2 waits at
vertex v2. At the next step t1 → t2, agent a1 moves from
vertex v3 to vertex v4, and agent a2 moves from vertex v2 to
vertex v3. In the solution plan, the end time of agent a1 is 3,
the end time of agent a2 is 4, and so the makespan is 4.

III. THE PICAT LANGUAGE

Picat is a logic-based multi-paradigm language that in-
tegrates logic programming, functional programming, con-
straint programming, and scripting. Picat takes many features
from other languages, including logic variables, unification,
backtracking, pattern-matching rules, functions, list and array
comprehensions, loops, assignments, tabling for dynamic pro-
gramming and planning, and constraint solving with CP, SAT,
and MIP. The reader is referred to [31] for the details of the
language and the constraint modules.

In Picat, predicates and functions are defined with pattern-
matching rules. Picat has two types of rules: the non-
backtrackable rule: Head,Cond => Body and the backtrack-
able rule: Head,Cond ?=> Body. In a predicate definition,
the Head takes the form p(t1, . . . , tn), where p is a predicate
name, and n is the arity. The condition Cond, which is an
optional goal, specifies a condition under which the rule is
applicable. For a call C, if C matches Head and Cond
succeeds, then the rule is said to be applicable to C. When
applying a rule to call C, Picat rewrites C into Body. If the
used rule is backtrackable, then the program will backtrack to
C if Body fails. A function is a special kind of a predicate that
is defined by non-backtrackable rules. In a function definition,
the Head takes the form f(t1, . . . , tn) = Term, where f is a
function name and Term is a result to be returned. If Cond
and Body are both true, then they can be omitted together
with the => arrow.

Picat supports tabling, which caches previously calculated
solutions, and reuses them in subsequent computations. In
Picat, both predicates and functions can be tabled. In order
to have all calls and answers of a predicate or function
tabled, users just need to add the keyword table before the
first rule. For a predicate definition, the keyword table
can be followed by a tuple of table modes, including +
(input), - (output), min, max, and nt (not tabled).
For a predicate with a table mode declaration that contains
min or max, Picat tables one optimal answer for each tuple
of the input arguments. For example, the following predicate
shortest_dist computes the shortest-path cost of a given
pair of vertices in a unit-cost graph that is represented by the
predicate edge/2:

table (+,min)
shortest_dist((V,V),Cost) =>

Cost = 0.
shortest_dist((V,FV),Cost) =>

edge(V,NextV),
shortest_dist((NextV,FV),Cost1),
Cost = Cost1+1.

We use this tabled predicate later in this paper.1

Picat provides three solver modules, cp, sat, and mip,
for modeling and solving CSPs. As a constraint programming
language, Picat resembles CLP(FD) : the operator :: is used

1When applied to finding single-source shortest-path costs, this tabled
predicate implements Dijkstra’s algorithm, except that it tables shortest-path
costs from the encountered vertices to the destination vertex.

for domain constraints, the operators #=, #!=, #>, #>=, #<,
#<=, and #=< are used for arithmetic constraints, and the
operators #/\ (and), #\/ (or), #ˆ (xor), #˜ (not), #=> (if),
and #<=> (iff) are used for Boolean constraints. Picat sup-
ports several global constraints, such as all_different/1,
element/3, and cumulative/4. In addition to inten-
sional constraints, Picat also supports expressing extensional,
or table, constraints. The common interface that Picat provides
for the solver modules allows seamless switching from one
solver to another, and the basic language constructs, such as
arrays, loops, and list comprehensions, make Picat a conve-
nient modeling language for CSPs.

For the sat module, the Picat SAT compiler [29], [30]
translates constraints into a logic formula in the conjunctive
normal form (CNF) for the underlying SAT solver. Picat
employs the log-encoding for compiling domain variables and
constraints. For a domain with the maximum absolute value n,
log2n Boolean variables are used. If the domain contains both
negative and positive values, then another Boolean variable
is used to encode the sign. Each combination of values of
these Boolean variables represents a valuation for the domain
variable. PicatSAT flattens constraints into primitive ones,
and performs numerous optimizations, both in the phase of
breaking constraints into primitive ones, and in the phase of
compiling primitive constraints into adders and comparators
[30]. For optimization problems, Picat uses branch-and-bound
to optimize the objective. It first posts the problem as a
constraint satisfaction problem, ignoring the objective. Once a
solution is found, Picat uses binary search to find a solution
with the optimum value.

For the mip module, constraints are compiled into
inequality (≤) constraints. The compilation follows the
standard textbook recipe [2]. For example, the reification
constraint B #<=> (X #=< Y) is translated into
X-Y-M1*(1-B) #=< 0 and Y-X+1-M2*B #=< 0,
where M1 and M2 are constants:

M1 = ubd(X)-lbd(Y)+1
M2 = ubd(Y)-lbd(X)+2

where ubd(X) is the upper bound of the domain of X, and
lbd(X) is the lower bound. The compiler avoids introducing
big constants when linearizing constraints if possible. For
example, the constraint B #=> (sum(L) #>= C), where
L is a list of non-negative integer-domain variables and C is
a positive constant, is translated into sum(L) #>= C*B.

IV. A MAPF MODEL AND ITS IMPLEMENTATION IN PICAT

This section gives a CSP model for MAPF, together with its
implementation in Picat. The first presented model is designed
to optimizie makespan. Then, we propose a technique for
processing the state variables before running the model, so
as to help the underlying solver find solutions faster. Then, an
extended program is presented for optimizing the sum-of-costs
for a given makespan.

A. The MAPF Model

We can model the MAPF problem as a CSP, following the
planning-as-satisfiability framework [11]. We use a Boolean

variable Btav to indicate if agent a (a = 1, 2, . . . , k) occupies
vertex v (v = 1, 2, . . . , n) at time t (t = 0, 1, . . . ,m). The
following constraints ensure the validity of every state and
every transition:

(1) Each agent occupies exactly one vertex at each time.
Σn

v=1Btav = 1 for t = 0, . . . ,m, and a = 1, . . . , k.
(2) No two agents occupy the same vertex at any time.

Σk
a=1Btav ≤ 1 for t = 0, . . . ,m, and v = 1, . . . , n.

(3) If agent a occupies vertex v at time t, then a occupies
a neighboring vertex at time t + 1. 2

Btav = 1⇒ Σu∈neibs(v)(B(t+1)au) ≥ 1
for t = 0, . . . ,m− 1, a = 1, . . . , k, and v = 1, . . . , n.

Note that constraints (1) and (3) entail that

Btav = 1⇒ Σu∈neibs(v)(B(t+1)au) = 1,

for t = 0, . . . ,m − 1, a = 1, . . . , k, and v = 1, . . . , n. It
is more efficient to use inequality (≥) in constraint (3) than
equality, because the inequality constraint can be compiled
into one CNF clause.

The model consists of k × (m + 1)× n Boolean variables,
where k is the number of agents, m is the makespan, and
n is the number of vertices in the graph. The exactly-one
constraint Σn

v=1Btav = 1 in (1) is encoded as a conjunction of
the at-least-one constraint Σn

v=1Btav ≥ 1 and the at-most-one
(AMO) constraint Σn

v=1Btav ≤ 1. The at-least-one constraint
is encoded as one clause. The number of clauses generated
from the constraints in the model depends on how the AMO
constraint is encoded. The PicatSAT compiler employs the 2-
product algorithm [5], which encodes the summation Σl

i=1Bi

in the AMO constraint as the Cartesian product of two subsets
of Boolean variables. Based on this encoding, the model
requires O(m × k ×

√
n + m × n ×

√
k) auxiliary variables

and O(m× k × n) clauses to encode.

B. The Implementation in Picat

Figure 2 shows an implementation of the CSP model in
Picat. The program uses the sat module. We can switch to
mip or cp by changing the import declaration.

For a given MAPF problem, the graph is represented by
the predicate neibs(V,Neibs), which binds Neibs to the
list of the neighboring vertices of a given vertex V. Let N
be the number of vertices in the graph, and As be a list of
agents, where each agent is a pair that indicates the starting
and ending vertices of the agent. The predicate path(N,As)
finds a path for each of the agents.

The function call len(As) returns the number of agents
(the length of the list). The predicate

lower_upper_bounds(As,LB,UB)

computes the lower and upper bounds on an optimal
makespan. The lower bound, LB, is the maximum of the
shortest-path costs, which is the number of steps required to

2Recall that we assume the graph is reflexive.

import sat.

path(N,As) =>
K = len(As),
lower_upper_bounds(As,LB,UB),
between(LB,UB,M),
B = new_array(M+1,K,N),
B :: 0..1,

% Initialize the first and last states
foreach (A in 1..K)

(V,FV) = As[A],
B[1,A,V] = 1,
B[M+1,A,FV] = 1

end,

% Each agent occupies exactly one vertex
foreach (T in 1..M+1, A in 1..K)

sum([B[T,A,V] : V in 1..N]) #= 1
end,

% No two agents occupy the same vertex
foreach (T in 1..M+1, V in 1..N)

sum([B[T,A,V] : A in 1..K]) #=< 1
end,

% Every transition is valid
foreach (T in 1..M, A in 1..K, V in 1..N)

neibs(V,Neibs),
B[T,A,V] #=>
sum([B[T+1,A,U] : U in Neibs]) #>= 1

end,

solve(B),
output_plan(B).

Fig. 2. A program in Picat for MAPF.

move the most difficult agent from its initial vertex to its
destination vertex. The upper bound, UB, is the sum of the
shortest-path costs. If only one agent is allowed to move at
each step, then UB is the number of steps required to move
all of the agents to their destinations.3

The predicate call between(LB,UB,M) generates a num-
ber M between LB and UB; it generates the next number on
backtracking. If a plan is found for a value of M, then the plan
is guaranteed to be optimal with the makespan M. Otherwise, if
no plan is found for the value, then the program backtracks to
between to generate the next number. This generate-and-test
step is repeated until a plan is found for some value M, or until
no plan is found after all of the numbers in the range LB..UB
have been tried. Note, that M determines the size of the model
and hence it is better to start with smaller M (makespan).

The function call new_array(M+1,K,N) creates a three
dimensional array, where the first dimension indicates the time
points from 1 through M+1, the second dimension refers to the
agents 1..K, and the third dimension represents the vertices
1..N. The call B :: 0..1 changes the entries of the array
B to Boolean variables, which are 0/1 integer domain variables.

There are four foreach loops in the encoding. The first
foreach loop initializes the first and last states. For an agent
A whose initial vertex is V and whose goal vertex is FV, the
entries B[1,A,V] and B[M+1,A,FV] are set to 1. Note
that, since array indices in Picat are 1-based, the initial state
has index 1, and the goal state has index M+1. The remaining

3Note that it is assumed that there is a path connecting each
agent’s starting vertex to its destination vertex; otherwise, the predicate
lower_upper_bounds fails.

three foreach loops encode the constraints (1), (2), and (3)
in the model. The call solve(B) performs three operations:
(1) it compiles all the accumulated constraints into CNF; (2) it
calls the SAT solver to solve the CNF formula; (3) it retrieves
the solution from the SAT solver and produces bindings for
the variables in B. If a different solver module is imported,
then constraints are translated into different encodings.

C. Preprocessing

Consider an agent a whose starting vertex is start(a) and
whose goal vertex is goal(a). For a vertex v, let d(s, v) be
the shortest distance from start(a) to v, and d(v, g) be the
shortest distance from v to goal(a). Agent a cannot occupy
vertex v at times t = 0, 1, . . . , d(s, v)− 1:

Btav = 0 for t = 0, 1, . . . , d(s, v)− 1.

Similarly, agent a cannot occupy vertex v at times t = m −
d(v, g) + 1, . . . ,m:

Btav = 0 for t = m− d(v, g) + 1, . . . ,m.

Setting these Btav values is done in a pre-processing phase,
i.e., before giving the model to the underlying solver. Note that
this preprocessing phase requires finding shortest-path costs
and setting the variables, which takes O(k×n2 + k×n×m)
overall running time, where k is the number of agents, m is the
makespan, and n is the number of vertices. For large graphs,
this complexity is prohibitive. For grid maps, Manhattan
distances can be substituted as estimates of shortest-path costs.

V. MODELING MAPF VARIANTS

The MAPF problem has many variants that correspond
to the broad range of MAPF applications. One of the main
strengths of using constraint programming in general and Picat
in particular is the ease with which one can support different
variants of the problem. In this section, we demonstrate how
important variants of MAPF can be encoded using our Picat
modeling by making only minimal changes to the encoding.

A. The Sum-of-Costs Objective

The declarative model described above is designed to op-
timize for makespan. However, different objective functions
have been studied for MAPF, such as finding a plan with
minimum sum of costs.

Definition 3 (Sum of costs): The sum-of-costs (SOC) of a
plan is the sum of the end times of the paths in the plan.
In the MAPF example depicted in Figure 1, the SOC is 7. Note
that makespan and SOC cannot generally be simultaneously
optimized, i.e., there are cases where the makespan-optimal
plan is different from the SOC-optimal plan.

We can easily extend the core model to make it find a
plan with the minimum sum-of-costs instead of minimum
makespan. To this end, we introduce a variable Ea for each
agent a (a = 1, 2, ..., k) that represents the end time of the
agent. The domain of Ea has the cost of the shortest path
from a’s initial vertex to its goal vertex as its lower bound,
and the maximum makespan as its upper bound.

end_time(B,As,K,M,E) =>
E = new_array(K),
E :: 1..M+1,
foreach (A in 1..K, T in 1..M+1)

(V,FV) = As[A],
if T > 1 then

E[A] #= T #=> B[T-1,A,FV] #= 0
end,
foreach (T1 in T..M+1)

E[A] #= T #=> B[T1,A,FV] #= 1
end

end.

Fig. 3. The Picat code for constraints (4) and (5) in the SOC model.

Let goal(a) be g, a’s goal vertex. The following constraints
enforce that the agent reaches its goal at time Ea and stays at
the goal afterwards.

(4) Agent a reaches its goal vertex g at time Ea, i.e.,
agent a does not occupy vertex g at time Ea − 1:
For t = 2, 3, . . . ,m, Ea = t→ B(t−1)ag = 0.

(5) Agent a occupies vertex g from time Et through m.
For t = Ea, Ea + 1, . . . ,m, Btag = 1.

The objective is to minimize the sum-of-costs:
min(Σk

a=1Ea). The predicate given in Figure 3 encodes
constraints (4) and (5).

The constraint E[A] #= T #=> B[T-1,A,FV] #= 0
states that if agent A’s end time is T, then agent A does not
occupy the goal vertex FV at time T-1. The inner foreach
loop enforces that the agent A occupies the goal vertex FV
from time T through M+1.

A straightforward approach to modify the program in
Figure 2 to make it minimize the overall sum-of-costs is
changing the nondeterministic call between(LB,UB,M)
to M = UB, adding the call end_time(B,As,K,M,E)
before the call to solve, and changing solve(B) to
solve([$min(sum(E))],B),4 which passes the objec-
tive min(sum(E)) to the solver. In this way, the plan found
will have the minimum SOC for all possible makespans. This
naive approach requires many variables in the model if the
upper bound for makespan is large. A more advanced approach
was proposed in [24] that is based on idea of increasing
the makespan together with increasing the limit for the cost
function. This reduces the size of the model (the number of
variables), but increases the number of calls to the solver (the
solver is invoked for every makespan tried).

One can also devise a hybrid objective function: minimizing
makespan as a primary objective and minimizing SOC as a
secondary objective, i.e., among plans with the same makespan
prefer the plan that has the smallest SOC. In order to modify
the program in Figure 2 to perform this two-stage optimization,
we just need to make the same changes as above for optimizing
overall SOC, but leaving between(LB,UB,M) as it is.

B. Priorities

The sum of costs objective assumes that the cost of moving
each agent is equal. In many scenarios, however, moving dif-
ferent agents may incur different costs. For example, consider

4The preceding dollar symbol indicates that min(sum(E)) is a term, not
a function call.

foreach(T in 1..M1, A in 1..K, V in 1..N)
B[T,A,V] #=> sum([B[Prev,A2,V] :

A2 in 1..K, A2!=A,
Prev in max(1,T-L)..T]) #= 0

end

Fig. 4. The constraint needed to support finding a L-robust solution

a MAPF problem where all agents represent taxis moving
people in a city except for one agent that represents an
ambulance driving to the hospital. Clearly, it is more important
to minimize the time it takes the ambulance to reach the
hospital than to minimize the time spent by the other taxi
agents. We can represent such scenarios in a general way by
assuming a given vector of weights w = (w1, . . . , wk), where
wi is the cost of having agent ai spend one time step, and the
corresponding objective function is the weighted sum-of-costs.

Adjusting the sum of costs model to support priorities in
such a ways is trivial. We define a variable WE = w·E, which
holds the weighted cost of each agent, and pass to the solver
the objective min(sum(WE)) instead of min(sum(E)).

C. Robust Plans

Since agents may get delayed unexpectedly, it is sometimes
desirable to create solutions to MAPF problems that are robust
to such changes. One form of such robust planning that was
suggested in the context of MAPF is L-robustness [1]. A
L-robust solution to a MAPF problem is a problem that
minimizes some objective function (e.g., sum of costs or
makespan) while ensuring that the solution can be executed
as long as there is no agent that will experience more than L
unexpected delays.

Adjusting the Picat model to return L-robust solutions is
also very simple. It involves modifying a constraint that forbids
two agents from occupying the same vertex at the same
time, such that the constraint forbids every two agents from
occupying the same vertex in times that are no more than L
time steps from each other. Fig. 4 shows the exact Picat code
for this constraint. We implemented this variant and observed
that in some settings it is comparable to a CBS-based k-robust
solver [1].

D. Edge Conflicts and Train-like Motion

Some variants of the problem impose additional constraints
on valid paths. One constraint requires that when an agent
moves from vertex u to v (u 6= v) at time t, v cannot be
occupied by another agent at time t. Without this constraint
agents can move in a train-like formation, while having this
constraint bans such a motion and bans agents from making
cyclic rotations in an empty-space-free area [27]. Encoding
this constraint on top of the Picat model is very easy. In fact,
it is equivalent to searching for a 1-robust solution.

Another constraint that have been used in prior works is to
mandate that no two agents can cross each other on an edge
at any time step. Under this constraint, when an agent moves
from vertex u to vertex v at time step t → (t + 1), no agent
can move from vertex v to vertex u at the same time step.
This is known as the edge conflict constraint. Adjusting the

model to avoid edge conflicts can be done by adding an explicit
constraint that checks for every two agents, every location, and
every pair of consecutive time steps that these agents did not
swap locations. We implemented this extension and observed
that it causes substantial increase in runtime, as this constraint
translates to many constraints to the underlying solver. An
alternative implementation can be to maintain a variable for
each edge, time step, and agent, to keep track of which edges
are being used by the agents.

Note that we do not claim that all the above is the best
encoding for these variants. More sophisticated encodings
might yield shorter runtimes. However, the above encodings
are sound and easily implemented in our declarative model.

VI. EXPERIMENTAL RESULTS

This section gives experimental results comparing a range
of solvers, encodings, and MAPF variants. Following prior
work, we generated random problem instances by randomly
adding obstacles to an NxN grid and set random start and
goal locations to the agents in that grid [23], [19]. Of the set
of problems we have generated, we chose 20 representative
instances under different settings. Each instance name takes
the form gN_pP_aK, where N×N is the grid size, P is the
percentage of obstacles, or blocked squares, in the grid, and
K is the number of agents. For example, g16_p10_a40
represents an instance with 40 agents on a 16x16 grid where
10% of its cells are obstacles. Unless stated otherwise, all
experiments were run on Cygwin notebook computer with
2.60GHz Intel i7 and 64GB RAM, and we measured CPU
time in seconds. A time limit was set to 600 seconds.

Table I compares the performances of finding makespan-
optimal plans with our declarative model using different un-
derlying solvers, namely SAT and MIP. For SAT, the generated
CNF code was solved with Lingeling (version 587f) [3]. For
MIP, the generated code was solved with Gurobi version 6.5.1
[9]. We evaluated the solvers’ performance with (columns
SATp and MIPp) and without (columns SATnop and MIPnop)
the preprocessing described in Section IV-C.

A CP model and a planner model, both available in Picat
version 2.1, were also evaluated. The CP model uses a domain
variable for each agent and each time, which indicates the
vertex that the agent occupies at the time. The planner model
searches the state space using tabled backtracking search. The
results of the CP and planner models were very poor on large
instances so we do not present them in this section.

The results show two clear trends. First, as expected, the
preprocessing described in Section IV-C is significantly useful
for both SAT and MIP solvers. Second, the SAT solver (with
preprocessing) is always almost the same as or faster than
the MIP solver for our instances. Further testing showed that
the SAT program successfully solved all of the instances with
100 agents generated for the grid size of 32 × 32 within the
time limit. Note that the MIP solver we used – Gurobi – is
commercial and not open source. Thus, it is difficult to analyze
why our SAT solver was faster than our MIP solver.

TABLE I
A COMPARISON OF SOLVERS’ PERFORMANCE FOR MINIMIZING

MAKESPAN (CPU TIME, SECONDS)

Instance (M) SATnop SATp MIPnop MIPp

g16 p10 a05 (14) 0.59 0.27 1.51 0.43
g16 p10 a10 (20) 2.29 1.37 4.96 0.88
g16 p10 a20 (23) 5.73 2.76 13.14 2.54
g16 p10 a30 (23) 8.89 3.11 19.88 3.50
g16 p10 a40 (30) 24.40 8.25 119.07 72.93
g16 p20 a05 (24) 1.70 1.01 3.23 0.83
g16 p20 a10 (24) 2.29 1.50 5.86 1.81
g16 p20 a20 (23) 4.56 2.12 11.26 2.50
g16 p20 a30 (28) 11.63 4.37 38.31 7.06
g16 p20 a40 (22) 12.19 3.48 31.35 10.24
g32 p10 a05 (37) 7.45 1.98 24.86 2.14
g32 p10 a10 (34) 13.63 3.08 49.74 4.15
g32 p10 a20 (42) 40.67 8.71 219.65 14.05
g32 p10 a30 (55) 82.02 34.48 380.28 167.94
g32 p10 a40 (47) 79.49 34.95 >600 150.59
g32 p20 a05 (53) 11.10 5.75 54.97 9.86
g32 p20 a10 (36) 14.03 2.97 50.56 4.99
g32 p20 a20 (49) 42.80 16.93 266.25 24.69
g32 p20 a30 (43) 53.30 12.98 248.05 43.38
g32 p20 a40 (42) 86.66 16.51 351.55 30.89

Total solved 20 20 19 20

For both SAT and MIP, the running time increases with the
increase of the number of agents, but the increase rate for
SAT is usually much smaller than that for MIP. The impact of
increasing the percentage of obstacles increases from 10% to
20% is less clear, but in general having more obstacles reduces
the runtime. This is because having more obstacles reduces the
graph size, and ultimately leads to the decrease of the number
of variables in the models.

Next, we evaluated the performance of some of the variants
of our declarative model described in Section V. Table II gives
the CPU time taken to find a plan for three different objective
functions: (1) minimum SOC among those with the shortest
makespan (columns “makespan+SOC”), (2) minimum SOC
(regardless of the makespan, reported in the “SOC” columns),
and (3) minimum SOC with priorities (i.e., weighted SOC,
reported in the “SOC with priorities” columns). For the SOC
and SOC with priorities results, we present results for the
naive model (denoted with a naive subscript), in which the
makespan is set to its upper bound, and the more advanced
model mentioned (denoted with a adv subscript), in which the
makespan increases synchronously with the bound for SOC
[24] (see Section V-A).

Consider the results for makespan+SOC. While the SAT
solver was sometimes slower, it was in general more effective,
solving all 20 instances within the time limit while the
MIP solver could solve only 11. These results are counter-
intuitive because this objective function involves multiple
integer-domain variables and there is a perception that MIP is
more suited to arithmetic constraints than SAT. Nonetheless,
this experiment shows that log-encoded SAT code [30] is
competitive and even better for this problem setting.

Next, consider the results for the SOC objective. Following
prior work, we observe that optimizing SOC is harder than
optimizing makespan [25]. Indeed, none of the solvers where
able to solve all 20 instances. Here too the SAT solver

TABLE II
A COMPARISON OF SOLVERS’ PERFORMANCE FOR MINIMIZING SUM-OF-COSTS (CPU TIME, SECONDS)

Instance (SOC) makespan+SOC SOC SOC with priorities
SAT MIP SATnaive SATadv MIPnaive MIPadv SATnaive SATadv MIPnaive MIPadv

g16 p10 a05 (55) 0.85 0.35 19.70 5.68 8.07 2.46 24.45 64.57 10.85 71.67
g16 p10 a10 (126) 8.48 1.10 64.80 35.82 69.38 24.49 127.67 >600 96.50 >600
g16 p10 a20 (240) 21.60 3.05 453.06 143.35 82.38 336.93 >600 >600 >600 >600
g16 p10 a30 (376) 23.38 >600 >600 495.04 >600 >600 >600 >600 >600 >600
g16 p10 a40 (526) 97.03 >600 >600 >600 >600 >600 >600 >600 >600 >600
g16 p20 a05 (66) 3.84 0.97 26.16 16.20 10.76 8.14 33.64 90.28 14.04 109.80
g16 p20 a10 (141) 11.62 2.70 96.74 92.16 224.21 153.02 121.09 >600 231.45 >600
g16 p20 a20 (278) 16.91 17.66 528.72 209.74 >600 >600 >600 >600 >600 >600
g16 p20 a30 (423) 60.02 >600 >600 >600 >600 >600 >600 >600 >600 >600
g16 p20 a40 (520) 46.87 >600 >600 >600 >600 >600 >600 >600 >600 >600
g32 p10 a05 (124) 14.70 2.65 230.50 29.91 93.46 42.08 264.88 >600 115.94 >600
g32 p10 a10 (218) 18.99 34.95 >600 84.92 >600 176.39 >600 >600 >600 >600
g32 p10 a20 (446) 76.22 18.53 >600 586.71 >600 >600 >600 >600 >600 >600
g32 p10 a30 (738) 421.21 >600 >600 >600 >600 >600 >600 >600 >600 >600
g32 p10 a40 (960) 361.32 >600 >600 >600 >600 >600 >600 >600 >600 >600
g32 p20 a05 (125) 41.26 13.55 181.86 58.27 131.99 196.74 260.22 >600 151.30 >600
g32 p20 a10 (253) 25.44 66.38 >600 112.20 >600 >600 >600 >600 >600 >600
g32 p20 a20 (481) 195.75 >600 >600 >600 >600 >600 >600 >600 >600 >600
g32 p20 a30 (852) 123.50 >600 >600 >600 >600 >600 >600 >600 >600 >600

g32 p20 a40 (1050) 197.33 >600 >600 >600 >600 >600 >600 >600 >600 >600
Total solved 20 11 8 12 7 8 6 2 6 2

TABLE III
A COMPARISON WITH STATE-OF-THE-ART MAKESPAN AND SOC

(CPU TIME, SECONDS)

Instance Makespan Sum of costs
Picat MDD ASP Picat MDD ICBS

g16 p10 a05 0.27 0.02 10.86 5.68 0.01 0.01
g16 p10 a10 1.37 0.14 9.58 35.82 0.01 0.01
g16 p10 a20 2.76 0.76 26.06 143.35 0.01 0.01
g16 p10 a30 3.11 0.79 >600 495.04 0.52 0.02
g16 p10 a40 8.25 4.71 >600 >600 107.95 >600
g16 p20 a05 1.01 0.16 5.96 16.2 0.01 0.01
g16 p20 a10 1.5 0.31 18.59 92.16 1.58 0.16
g16 p20 a20 2.12 0.46 20.71 209.74 0.6 0.05
g16 p20 a30 4.37 1.45 >600 >600 >600 >600
g16 p20 a40 3.48 1.15 >600 >600 >600 >600
g32 p10 a05 1.98 0.53 12.93 29.91 0.01 0.01
g32 p10 a10 3.08 1.21 31.34 84.92 0.01 0.01
g32 p10 a20 8.71 6.8 105.47 586.71 0.03 0.01
g32 p10 a30 34.48 40.13 274.11 >600 0.22 0.02
g32 p10 a40 34.95 24.87 >600 >600 1.81 0.34
g32 p20 a05 5.75 2.77 11.99 58.27 0.01 0.01
g32 p20 a10 2.97 1.11 33.22 112.2 0.09 0.01
g32 p20 a20 16.93 13.73 101.84 >600 2.5 0.22
g32 p20 a30 12.98 4.54 199.69 >600 1.78 0.05
g32 p20 a40 16.51 8.17 418.56 >600 3.24 0.13
Total solved 20 20 15 12 18 17

performed best. Also, the advanced model [24] is clearly
more efficient than the naive one, Finally, consider the results
for the SOC with priorities objective. Adding priorities to
agents increases the role of numerical objective and indeed
the MIP solver was the best there. Notice also that the naive
model is better in this setting as it requires a single call to
the solver, while the advanced model tries many makespans.
This indicates that there is an interesting relation between the
satisfiability component (path finding, no-conflict constraints)
and numerical objective, which is a topic for future work.

Table III compares the performance of our best model
(SATp and SATadv) with other state-of-the-art MAPF solvers.
In particular, we compared with an ASP-based solver [8],
MDD-SAT for optimizing makespan [22], MDD-SAT for
optimizing SOC [24], and Improved Conflict-Based Search
(ICBS) [4]. The ASP-based solver was the program given
in [8] solved with the clingo 4.5.4 ASP solver [6].
The MDD-SAT solver uses encodings very similar to ours,

including a similar reachability-based preprocessing. MDD-
SAT for SOC includes an additional optimization that re-
duces significantly the number of variables and constraints
by counting only movements of agents that contribute to the
cost above the sum of individual costs (sum of lengths of
shortest paths connecting start and goal per individual agents).
ICBS is the best solver from CBS family of search-based
MAPF solvers. Note that there is no available ASP-based
MAPF solver for minimizing SOC and no version of ICBS
designed for minimizing makespan. For all solvers, the CPU
time included all relevant preprocessing (including grounding
time for ASP) and the solving time. The best result for each
objective and instance was marked in bold.

Consider first the makespan objective. The results show
that the ASP solver is clearly the slowest. It was able to
find at least one plan for each of the instances, but failed
to find optimal plans for 5 of the instances within the time
limit. These results are consistent with the ones reported in
[8]. The performance of our model and MDD-SAT is very
similar, which is reasonable since the models are very similar.
The difference can be attributed to the at-most-one constraint
encoding, which is intensively used by both models: MDD-
SAT uses the sequential counter encoding [18] while Picat
uses the product encoding [5].

For the SOC objective, MDD-SAT has a clear advantage
over our solution. We conjecture that this is due to (1)
the more advanced preprocessing employed by MDD-SAT
where the full shortest path to prune variables instead of
the Manhattan distance, (2) the encoding of the sum-of-
costs bound based on sequential counter that enables efficient
Boolean constraint propagation within the SAT solver, and
(3) the above-mentioned additional optimization that counts
only movements over the sum of individual costs. ICBS,
which is a highly optimized MAPF-specific search-baseed
solver is understandably the fastest in most cases, except for
one case which was solved by MDD-SAT and not by ICBS.
Note that we can improve our SOC model using the MDD-

SAT optimizations. However, the focus of this work is not
in devising the best declarative model for each MAPF variant,
but to demonstrate the flexibility of our declarative model. For
example, there is no ASP, MDD-SAT, or ICBS versions for
supporting different agent priorities, while we have shown that
it is trivial to do so with our declarative model.

VII. RELATED WORK AND DISCUSSION

Our declarative model follows the planning-as-satisfiability
framework [10], [11], [13]. Declarative models based on the
same framework have been proposed for SAT [23], ASP [8],
and CP [15] solvers. The ASP encoding is arguably the most
concise and elegant one. As we showed experimentally, our
model is more efficient. More importantly, the downside of
ASP is its lack of flexibility in expressing low-level constraints
and control knowledge. For example, in ASP, it is difficult to
implement the use of greater-than rather than equality in the
transition constraint Btav = 1 ⇒ Σu∈neibs(v)(B(t+1)au) ≥ 1,
the preprocessing technique for eliminating variables, and the
generate-and-test algorithm utilized to optimize makespan.
The preprocessing technique for eliminating variables we de-
scribe in Section IV-C is well-used in constraint programming
for maintaining consistency of some of the global constraints,
such as the regular constraint [12].

Many MAPF solvers that are not based on a declarative
model. Yu and LaValle formulates and solve MAPF as a
network flow problem [28]. Others used sophisticated solvers
based on heuristic search. A mini-survey of both algorithmic
and declarative solutions to MAPF can be found in [16].

VIII. CONCLUSION

We presented a constraint-based declarative model and its
implementation in Picat for the MAPF problem. The model
is easy and the implementation is concise. Through the Picat
implementation, we provide for the first time a direct com-
parison of SAT and MIP solvers for MAPF. Our declarative
solution using SAT is more competitive than existing declar-
ative solutions and is comparable to state-of-the-art MAPF
solvers. Also, while declarative models tend to suffer from
poor performance, our model is comparable with the state-of-
the-art. We also show how our solution can be easily altered
for other variants and objectives, some of which were never
addressed before. Further work includes comparison on more
benchmarks and exploitation of domain knowledge, such as
graph structures, for better performance.

ACKNOWLEDGEMENTS

Roman Barták is supported the Czech Science Foundation
under the project P202/12/G061 and together with Roni Stern
and Pavel Surynek by the Czech-Israeli Cooperative Scientific
Research Project 8G15027. Neng-Fa Zhou is supported in part
by the NSF under grant number CCF1618046.

REFERENCES

[1] Dor Atzmon, Ariel Felner, Roni Stern, Glenn Wagner, Roman Barták,
and Neng-Fa Zhou. k-robust multi-agent path finding. In International
Symposium on Combinatorial Search (SoCS), pages 157–158, 2017.

[2] Dimitris Bertsimas and Robert Weismantel. Optimization over integers.
Athena Scientific, 2005.

[3] Armin Biere. Lingeling, http://fmv.jku.at/lingeling/, 2014.
[4] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded

Betzalel, and Solomon Eyal Shimony. ICBS: improved conflict-based
search algorithm for multi-agent pathfinding. In IJCAI, pages 740–746,
2015.

[5] Jingchao Chen. A new SAT encoding of the at-most-one constraint. In
the Int. Workshop of Constraint Modeling and Reformulation, 2010.

[6] Clingo. Potassco, the potsdam answer set solving collection, https://
potassco.org, 2016.

[7] Kurt M. Dresner and Peter Stone. A multiagent approach to autonomous
intersection management. J. Artif. Intell. Res. (JAIR), 31:591–656, 2008.

[8] Esra Erdem, Doga Gizem Kisa, Umut Öztok, and Peter Schüller. A
general formal framework for pathfinding problems with multiple agents.
In AAAI Conference on Artificial Intelligence, 2013.

[9] Gurobi. http://www.gurobi.com/, 2016.
[10] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. A novel transition

based encoding scheme for planning as satisfiability. In AAAI Conference
on Artificial Intelligence, 2010.

[11] Henry A. Kautz and Bart Selman. Planning as satisfiability. In ECAI,
pages 359–363, 1992.

[12] Gilles Pesant. A regular language membership constraint for finite
sequences of variables. In CP, pages 482–495, 2004.

[13] Jussi Rintanen. Planning as satisfiability: Heuristics. Artif. Intell.,
193:45–86, 2012.

[14] Gabriele Röger and Malte Helmert. Non-optimal multi-agent pathfinding
is solved (since 1984). In Symposium on Combinatorial Search (SoCS),
2012.

[15] Malcolm Ryan. Constraint-based multi-robot path planning. In ICRA,
pages 922–928, 2010.

[16] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The
increasing cost tree search for optimal multi-agent pathfinding. Artif.
Intell., 195:470–495, 2013.

[17] David Silver. Cooperative pathfinding. In the Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE), pages 117–122,
2005.

[18] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality
constraints. In CP, pages 827–831, 2005.

[19] Trevor Scott Standley. Finding optimal solutions to cooperative pathfind-
ing problems. In AAAI, volume 1, pages 28–29, 2010.

[20] Pavel Surynek. An optimization variant of multi-robot path planning is
intractable. In AAAI Conference on Artificial Intelligence, 2010.

[21] Pavel Surynek. On propositional encodings of cooperative path-finding.
In International Conference on Tools with Artificial Intelligence (ICTAI),
volume 1, pages 524–531. IEEE, 2012.

[22] Pavel Surynek. A sat-based approach to cooperative path-finding using
all-different constraints. In Symposium on Combinatorial Search (SoCS),
2012.

[23] Pavel Surynek. A simple approach to solving cooperative path-finding
as propositional satisfiability works well. In PRICAI, pages 827–833,
2014.

[24] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient SAT
approach to multi-agent path finding under the sum of costs objective.
In ECAI, pages 810–818, 2016.

[25] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. An em-
pirical comparison of the hardness of multi-agent path finding under
the makespan and the sum of costs objectives. In Symposium on
Combinatorial Search (SoCS), 2016.

[26] Ko-Hsin Cindy Wang and Adi Botea. Fast and memory-efficient multi-
agent pathfinding. In ICAPS, pages 380–387, 2008.

[27] Jingjin Yu and Steven M. LaValle. Structure and intractability of optimal
multi-robot path planning on graphs. In AAAI Conference on Artificial
Intelligence, 2013.

[28] Jingjin Yu and Steven M LaValle. Optimal multirobot path planning on
graphs: Complete algorithms and effective heuristics. IEEE Transactions
on Robotics, 32(5):1163–1177, 2016.

[29] Neng-Fa Zhou and Håkan Kjellerstrand. The Picat-SAT compiler. In
PADL, pages 48–62, 2016.

[30] Neng-Fa Zhou and Håkan Kjellerstrand. Optimizing SAT encodings for
arithmetic constraints. In CP, page 15 pages, 2017.

[31] Neng-Fa Zhou, Håkan Kjellerstrand, and Jonathan Fruhman. Constraint
Solving and Planning with Picat. Springer, 2015.

